ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cn1lem Unicode version

Theorem cn1lem 11083
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1  |-  F : CC
--> CC
cn1lem.2  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
Assertion
Ref Expression
cn1lem  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Distinct variable groups:    x, y, z   
y, A, z    y, F
Allowed substitution hints:    A( x)    F( x, z)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2 simpr 109 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  z  e.  CC )
3 simpll 518 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  A  e.  CC )
4 cn1lem.2 . . . . 5  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
52, 3, 4syl2anc 408 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) ) )
6 cn1lem.1 . . . . . . . . 9  |-  F : CC
--> CC
76ffvelrni 5554 . . . . . . . 8  |-  ( z  e.  CC  ->  ( F `  z )  e.  CC )
82, 7syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  z )  e.  CC )
96ffvelrni 5554 . . . . . . . 8  |-  ( A  e.  CC  ->  ( F `  A )  e.  CC )
103, 9syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( F `  A )  e.  CC )
118, 10subcld 8073 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( F `
 z )  -  ( F `  A ) )  e.  CC )
1211abscld 10953 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR )
132, 3subcld 8073 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( z  -  A )  e.  CC )
1413abscld 10953 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( abs `  (
z  -  A ) )  e.  RR )
15 rpre 9448 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  RR )
1615ad2antlr 480 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  x  e.  RR )
17 lelttr 7852 . . . . 5  |-  ( ( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  e.  RR  /\  ( abs `  ( z  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <_  ( abs `  ( z  -  A
) )  /\  ( abs `  ( z  -  A ) )  < 
x )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  <  x
) )
1812, 14, 16, 17syl3anc 1216 . . . 4  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <_  ( abs `  (
z  -  A ) )  /\  ( abs `  ( z  -  A
) )  <  x
)  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
) )
195, 18mpand 425 . . 3  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  z  e.  CC )  ->  ( ( abs `  ( z  -  A
) )  <  x  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2019ralrimiva 2505 . 2  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
21 breq2 3933 . . . . 5  |-  ( y  =  x  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  x
) )
2221imbi1d 230 . . . 4  |-  ( y  =  x  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2322ralbidv 2437 . . 3  |-  ( y  =  x  ->  ( A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <->  A. z  e.  CC  ( ( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) ) )
2423rspcev 2789 . 2  |-  ( ( x  e.  RR+  /\  A. z  e.  CC  (
( abs `  (
z  -  A ) )  <  x  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
251, 20, 24syl2anc 408 1  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   A.wral 2416   E.wrex 2417   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619    < clt 7800    <_ cle 7801    - cmin 7933   RR+crp 9441   abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  abscn2  11084  cjcn2  11085  recn2  11086  imcn2  11087
  Copyright terms: Public domain W3C validator