ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem2 Unicode version

Theorem cnegexlem2 7250
Description: Existence of a real number which produces a real number when multiplied by  _i. (Hint: zero is such a number, although we don't need to prove that yet). Lemma for cnegex 7252. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem2  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR

Proof of Theorem cnegexlem2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7077 . 2  |-  0  e.  CC
2 cnre 7081 . 2  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
3 ax-rnegex 7051 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  RR  ( x  +  z )  =  0 )
43adantr 265 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  E. z  e.  RR  ( x  +  z
)  =  0 )
5 recn 7072 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
6 ax-icn 7037 . . . . . . . . . . . 12  |-  _i  e.  CC
7 recn 7072 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  y  e.  CC )
8 mulcl 7066 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
96, 7, 8sylancr 399 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
10 recn 7072 . . . . . . . . . . 11  |-  ( z  e.  RR  ->  z  e.  CC )
11 addid2 7213 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  ->  (
0  +  z )  =  z )
12113ad2ant3 938 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  z )  =  z )
1312adantr 265 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  z )
14 oveq1 5547 . . . . . . . . . . . . . . 15  |-  ( ( x  +  z )  =  0  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
1514ad2antrl 467 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  ( _i  x.  y
) ) )
16 add32 7233 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  z  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
17163com23 1121 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( x  +  z )  +  ( _i  x.  y ) )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
18 oveq1 5547 . . . . . . . . . . . . . . . . 17  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  +  z )  =  ( ( x  +  ( _i  x.  y ) )  +  z ) )
1918eqcomd 2061 . . . . . . . . . . . . . . . 16  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( x  +  ( _i  x.  y ) )  +  z )  =  ( 0  +  z ) )
2017, 19sylan9eq 2108 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  0  =  (
x  +  ( _i  x.  y ) ) )  ->  ( (
x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
2120adantrl 455 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
( x  +  z )  +  ( _i  x.  y ) )  =  ( 0  +  z ) )
22 addid2 7213 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  y )  e.  CC  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
23223ad2ant2 937 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( 0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2423adantr 265 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  ( _i  x.  y ) )  =  ( _i  x.  y ) )
2515, 21, 243eqtr3d 2096 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  (
0  +  z )  =  ( _i  x.  y ) )
2613, 25eqtr3d 2090 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  /\  ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y ) )
2726ex 112 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC  /\  z  e.  CC )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y ) ) )
285, 9, 10, 27syl3an 1188 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  z  e.  RR )  ->  (
( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( _i  x.  y
) ) )
29283expa 1115 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( ( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y
) ) )  -> 
z  =  ( _i  x.  y ) ) )
3029imp 119 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  =  ( _i  x.  y
) )
31 simplr 490 . . . . . . . 8  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  z  e.  RR )
3230, 31eqeltrrd 2131 . . . . . . 7  |-  ( ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  /\  (
( x  +  z )  =  0  /\  0  =  ( x  +  ( _i  x.  y ) ) ) )  ->  ( _i  x.  y )  e.  RR )
3332exp32 351 . . . . . 6  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
_i  x.  y )  e.  RR ) ) )
3433rexlimdva 2450 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( E. z  e.  RR  ( x  +  z )  =  0  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) ) )
354, 34mpd 13 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( _i  x.  y )  e.  RR ) )
3635reximdva 2438 . . 3  |-  ( x  e.  RR  ->  ( E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )  ->  E. y  e.  RR  ( _i  x.  y
)  e.  RR ) )
3736rexlimiv 2444 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  E. y  e.  RR  ( _i  x.  y )  e.  RR )
381, 2, 37mp2b 8 1  |-  E. y  e.  RR  ( _i  x.  y )  e.  RR
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259    e. wcel 1409   E.wrex 2324  (class class class)co 5540   CCcc 6945   RRcr 6946   0cc0 6947   _ici 6949    + caddc 6950    x. cmul 6952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938  df-ov 5543
This theorem is referenced by:  cnegex  7252
  Copyright terms: Public domain W3C validator