ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvpom Unicode version

Theorem cnvpom 4910
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpom  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem cnvpom
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2490 . . . . . . 7  |-  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2 ralidm 3358 . . . . . . . . 9  |-  ( A. w  e.  A  A. w  e.  A  -.  w R w  <->  A. w  e.  A  -.  w R w )
3 r19.3rmv 3348 . . . . . . . . . 10  |-  ( E. x  x  e.  A  ->  ( -.  w R w  <->  A. z  e.  A  -.  w R w ) )
43ralbidv 2373 . . . . . . . . 9  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  -.  w R w  <->  A. w  e.  A  A. z  e.  A  -.  w R w ) )
52, 4syl5rbb 191 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  -.  w R w  <->  A. w  e.  A  A. w  e.  A  -.  w R w ) )
65anbi1d 453 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
71, 6syl5bb 190 . . . . . 6  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
8 r19.26 2490 . . . . . . 7  |-  ( A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) )
98ralbii 2377 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) ) )
10 r19.26 2490 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
117, 9, 103bitr4g 221 . . . . 5  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) ) )
12 r19.26 2490 . . . . . . . 8  |-  ( A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
13 vex 2613 . . . . . . . . . . . . 13  |-  z  e. 
_V
1413, 13brcnv 4566 . . . . . . . . . . . 12  |-  ( z `' R z  <->  z R
z )
15 id 19 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  z  =  w )
1615, 15breq12d 3818 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
z R z  <->  w R w ) )
1714, 16syl5bb 190 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
z `' R z  <-> 
w R w ) )
1817notbid 625 . . . . . . . . . 10  |-  ( z  =  w  ->  ( -.  z `' R z  <->  -.  w R w ) )
1918cbvralv 2582 . . . . . . . . 9  |-  ( A. z  e.  A  -.  z `' R z  <->  A. w  e.  A  -.  w R w )
20 vex 2613 . . . . . . . . . . . . 13  |-  y  e. 
_V
2113, 20brcnv 4566 . . . . . . . . . . . 12  |-  ( z `' R y  <->  y R
z )
22 vex 2613 . . . . . . . . . . . . 13  |-  w  e. 
_V
2320, 22brcnv 4566 . . . . . . . . . . . 12  |-  ( y `' R w  <->  w R
y )
2421, 23anbi12ci 449 . . . . . . . . . . 11  |-  ( ( z `' R y  /\  y `' R w )  <->  ( w R y  /\  y R z ) )
2513, 22brcnv 4566 . . . . . . . . . . 11  |-  ( z `' R w  <->  w R
z )
2624, 25imbi12i 237 . . . . . . . . . 10  |-  ( ( ( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  ( ( w R y  /\  y R z )  ->  w R z ) )
2726ralbii 2377 . . . . . . . . 9  |-  ( A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R z ) )
2819, 27anbi12i 448 . . . . . . . 8  |-  ( ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2912, 28bitr2i 183 . . . . . . 7  |-  ( ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3029ralbii 2377 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
31 ralcom 2522 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3230, 31bitri 182 . . . . 5  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3311, 32syl6bb 194 . . . 4  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
3433ralbidv 2373 . . 3  |-  ( E. x  x  e.  A  ->  ( A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
35 ralcom 2522 . . 3  |-  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) ) )
36 ralcom 2522 . . 3  |-  ( A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3734, 35, 363bitr4g 221 . 2  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
38 df-po 4079 . 2  |-  ( R  Po  A  <->  A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) ) )
39 df-po 4079 . 2  |-  ( `' R  Po  A  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
4037, 38, 393bitr4g 221 1  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103   E.wex 1422    e. wcel 1434   A.wral 2353   class class class wbr 3805    Po wpo 4077   `'ccnv 4390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-po 4079  df-cnv 4399
This theorem is referenced by:  cnvsom  4911
  Copyright terms: Public domain W3C validator