ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresid Unicode version

Theorem cnvresid 4998
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid  |-  `' (  _I  |`  A )  =  (  _I  |`  A )

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 4752 . . 3  |-  `'  _I  =  _I
21eqcomi 2086 . 2  |-  _I  =  `'  _I
3 funi 4956 . . 3  |-  Fun  _I
4 funeq 4945 . . 3  |-  (  _I  =  `'  _I  ->  ( Fun  _I  <->  Fun  `'  _I  ) )
53, 4mpbii 146 . 2  |-  (  _I  =  `'  _I  ->  Fun  `'  _I  )
6 funcnvres 4997 . . 3  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  ( `'  _I  |`  (  _I  " A ) ) )
7 imai 4705 . . . 4  |-  (  _I  " A )  =  A
81, 7reseq12i 4632 . . 3  |-  ( `'  _I  |`  (  _I  " A ) )  =  (  _I  |`  A )
96, 8syl6eq 2130 . 2  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  (  _I  |`  A ) )
102, 5, 9mp2b 8 1  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1285    _I cid 4045   `'ccnv 4364    |` cres 4367   "cima 4368   Fun wfun 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-fun 4928
This theorem is referenced by:  fcoi1  5095  f1oi  5189
  Copyright terms: Public domain W3C validator