ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunexg Unicode version

Theorem cofunexg 5763
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 4843 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 4865 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 7 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4623 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
5 dmexg 4618 . . . . 5  |-  ( B  e.  C  ->  dom  B  e.  _V )
6 ssexg 3919 . . . . 5  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  dom  B  e. 
_V )  ->  dom  ( A  o.  B
)  e.  _V )
74, 5, 6sylancr 405 . . . 4  |-  ( B  e.  C  ->  dom  ( A  o.  B
)  e.  _V )
87adantl 271 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  o.  B
)  e.  _V )
9 rnco 4851 . . . 4  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
10 rnexg 4619 . . . . . 6  |-  ( B  e.  C  ->  ran  B  e.  _V )
11 resfunexg 5408 . . . . . 6  |-  ( ( Fun  A  /\  ran  B  e.  _V )  -> 
( A  |`  ran  B
)  e.  _V )
1210, 11sylan2 280 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  ran  B )  e.  _V )
13 rnexg 4619 . . . . 5  |-  ( ( A  |`  ran  B )  e.  _V  ->  ran  ( A  |`  ran  B
)  e.  _V )
1412, 13syl 14 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  ran  B
)  e.  _V )
159, 14syl5eqel 2166 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  o.  B
)  e.  _V )
16 xpexg 4474 . . 3  |-  ( ( dom  ( A  o.  B )  e.  _V  /\ 
ran  ( A  o.  B )  e.  _V )  ->  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B ) )  e. 
_V )
178, 15, 16syl2anc 403 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )
18 ssexg 3919 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  /\  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )  ->  ( A  o.  B
)  e.  _V )
193, 17, 18sylancr 405 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   _Vcvv 2602    C_ wss 2974    X. cxp 4363   dom cdm 4365   ran crn 4366    |` cres 4367    o. ccom 4369   Rel wrel 4370   Fun wfun 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934
This theorem is referenced by:  cofunex2g  5764
  Copyright terms: Public domain W3C validator