ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com25 Unicode version

Theorem com25 90
Description: Commutation of antecedents. Swap 2nd and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
Assertion
Ref Expression
com25  |-  ( ph  ->  ( ta  ->  ( ch  ->  ( th  ->  ( ps  ->  et )
) ) ) )

Proof of Theorem com25
StepHypRef Expression
1 com5.1 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
) ) ) )
21com24 86 . . 3  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ps  ->  ( ta  ->  et )
) ) ) )
32com45 88 . 2  |-  ( ph  ->  ( th  ->  ( ch  ->  ( ta  ->  ( ps  ->  et )
) ) ) )
43com24 86 1  |-  ( ph  ->  ( ta  ->  ( ch  ->  ( th  ->  ( ps  ->  et )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  bj-inf2vnlem2  10924
  Copyright terms: Public domain W3C validator