Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  con4biddc Unicode version

Theorem con4biddc 788
 Description: A contraposition deduction. (Contributed by Jim Kingdon, 18-May-2018.)
Hypothesis
Ref Expression
con4biddc.1 DECID DECID
Assertion
Ref Expression
con4biddc DECID DECID

Proof of Theorem con4biddc
StepHypRef Expression
1 con4biddc.1 . . . . . 6 DECID DECID
2 bi2 128 . . . . . 6
31, 2syl8 70 . . . . 5 DECID DECID
4 condc 783 . . . . . 6 DECID
54a2i 11 . . . . 5 DECID DECID
63, 5syl6 33 . . . 4 DECID DECID
76imp31 252 . . 3 DECID DECID
8 bi1 116 . . . . . 6
91, 8syl8 70 . . . . 5 DECID DECID
10 condc 783 . . . . . 6 DECID
1110imim2d 53 . . . . 5 DECID DECID DECID
129, 11sylcom 28 . . . 4 DECID DECID
1312imp31 252 . . 3 DECID DECID
147, 13impbid 127 . 2 DECID DECID
1514exp31 356 1 DECID DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 102   wb 103  DECID wdc 776 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663 This theorem depends on definitions:  df-bi 115  df-dc 777 This theorem is referenced by:  necon4abiddc  2319
 Copyright terms: Public domain W3C validator