ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm Unicode version

Theorem coprm 11822
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )

Proof of Theorem coprm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmz 11792 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2 gcddvds 11652 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  gcd  N )  ||  P  /\  ( P  gcd  N ) 
||  N ) )
31, 2sylan 281 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  ||  P  /\  ( P  gcd  N ) 
||  N ) )
43simprd 113 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  N )
5 breq1 3932 . . . . 5  |-  ( ( P  gcd  N )  =  P  ->  (
( P  gcd  N
)  ||  N  <->  P  ||  N
) )
64, 5syl5ibcom 154 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  P  ->  P  ||  N ) )
76con3d 620 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  ->  -.  ( P  gcd  N
)  =  P ) )
8 0nnn 8747 . . . . . . . . 9  |-  -.  0  e.  NN
9 prmnn 11791 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
10 eleq1 2202 . . . . . . . . . 10  |-  ( P  =  0  ->  ( P  e.  NN  <->  0  e.  NN ) )
119, 10syl5ibcom 154 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =  0  ->  0  e.  NN ) )
128, 11mtoi 653 . . . . . . . 8  |-  ( P  e.  Prime  ->  -.  P  =  0 )
1312intnanrd 917 . . . . . . 7  |-  ( P  e.  Prime  ->  -.  ( P  =  0  /\  N  =  0 ) )
1413adantr 274 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  -.  ( P  =  0  /\  N  =  0
) )
15 gcdn0cl 11651 . . . . . . . 8  |-  ( ( ( P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  ->  ( P  gcd  N )  e.  NN )
1615ex 114 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( P  gcd  N
)  e.  NN ) )
171, 16sylan 281 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( P  gcd  N )  e.  NN ) )
1814, 17mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  NN )
193simpld 111 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  P )
20 isprm2 11798 . . . . . . . 8  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2120simprbi 273 . . . . . . 7  |-  ( P  e.  Prime  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
22 breq1 3932 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( z  ||  P  <->  ( P  gcd  N )  ||  P ) )
23 eqeq1 2146 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  1  <->  ( P  gcd  N )  =  1 ) )
24 eqeq1 2146 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  P  <->  ( P  gcd  N )  =  P ) )
2523, 24orbi12d 782 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( ( P  gcd  N )  =  1  \/  ( P  gcd  N
)  =  P ) ) )
2622, 25imbi12d 233 . . . . . . . 8  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  ( ( P  gcd  N )  ||  P  ->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) ) ) )
2726rspcv 2785 . . . . . . 7  |-  ( ( P  gcd  N )  e.  NN  ->  ( A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2821, 27syl5com 29 . . . . . 6  |-  ( P  e.  Prime  ->  ( ( P  gcd  N )  e.  NN  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2928adantr 274 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  e.  NN  ->  ( ( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
3018, 19, 29mp2d 47 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) )
31 biorf 733 . . . . 5  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 ) ) )
32 orcom 717 . . . . 5  |-  ( ( ( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 )  <->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) )
3331, 32syl6bb 195 . . . 4  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) )
3430, 33syl5ibrcom 156 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  gcd  N
)  =  P  -> 
( P  gcd  N
)  =  1 ) )
357, 34syld 45 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  -> 
( P  gcd  N
)  =  1 ) )
36 iddvds 11506 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  ||  P )
371, 36syl 14 . . . . . 6  |-  ( P  e.  Prime  ->  P  ||  P )
3837adantr 274 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  ||  P )
39 dvdslegcd 11653 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) )
4039ex 114 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
41403anidm12 1273 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) ) )
421, 41sylan 281 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
4314, 42mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N ) ) )
4438, 43mpand 425 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  P  <_  ( P  gcd  N
) ) )
45 prmgt1 11812 . . . . . 6  |-  ( P  e.  Prime  ->  1  < 
P )
4645adantr 274 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  1  <  P )
471zred 9173 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR )
4847adantr 274 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  e.  RR )
4918nnred 8733 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  RR )
50 1re 7765 . . . . . . 7  |-  1  e.  RR
51 ltletr 7853 . . . . . . 7  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  ( P  gcd  N )  e.  RR )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5250, 51mp3an1 1302 . . . . . 6  |-  ( ( P  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( ( 1  < 
P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5348, 49, 52syl2anc 408 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5446, 53mpand 425 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  <_  ( P  gcd  N )  ->  1  <  ( P  gcd  N ) ) )
55 ltne 7849 . . . . . 6  |-  ( ( 1  e.  RR  /\  1  <  ( P  gcd  N ) )  ->  ( P  gcd  N )  =/=  1 )
5650, 55mpan 420 . . . . 5  |-  ( 1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1
)
5756a1i 9 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1 ) )
5844, 54, 573syld 57 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  ( P  gcd  N )  =/=  1 ) )
5958necon2bd 2366 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  ->  -.  P  ||  N ) )
6035, 59impbid 128 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    < clt 7800    <_ cle 7801   NNcn 8720   2c2 8771   ZZcz 9054   ZZ>=cuz 9326    || cdvds 11493    gcd cgcd 11635   Primecprime 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636  df-prm 11789
This theorem is referenced by:  prmrp  11823  euclemma  11824  cncongrprm  11835  isoddgcd1  11837  phiprmpw  11898
  Copyright terms: Public domain W3C validator