ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores2 Unicode version

Theorem cores2 4861
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 4555 . . . . . 6  |-  dom  A  =  ran  `' A
21sseq1i 2997 . . . . 5  |-  ( dom 
A  C_  C  <->  ran  `' A  C_  C )
3 cores 4852 . . . . 5  |-  ( ran  `' A  C_  C  -> 
( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
42, 3sylbi 118 . . . 4  |-  ( dom 
A  C_  C  ->  ( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
5 cnvco 4548 . . . . 5  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( `' `' ( `' B  |`  C )  o.  `' A )
6 cocnvcnv1 4859 . . . . 5  |-  ( `' `' ( `' B  |`  C )  o.  `' A )  =  ( ( `' B  |`  C )  o.  `' A )
75, 6eqtri 2076 . . . 4  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( ( `' B  |`  C )  o.  `' A )
8 cnvco 4548 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
94, 7, 83eqtr4g 2113 . . 3  |-  ( dom 
A  C_  C  ->  `' ( A  o.  `' ( `' B  |`  C ) )  =  `' ( A  o.  B ) )
109cnveqd 4539 . 2  |-  ( dom 
A  C_  C  ->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  `' `' ( A  o.  B ) )
11 relco 4847 . . 3  |-  Rel  ( A  o.  `' ( `' B  |`  C ) )
12 dfrel2 4799 . . 3  |-  ( Rel  ( A  o.  `' ( `' B  |`  C ) )  <->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C ) ) )
1311, 12mpbi 137 . 2  |-  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C )
)
14 relco 4847 . . 3  |-  Rel  ( A  o.  B )
15 dfrel2 4799 . . 3  |-  ( Rel  ( A  o.  B
)  <->  `' `' ( A  o.  B )  =  ( A  o.  B ) )
1614, 15mpbi 137 . 2  |-  `' `' ( A  o.  B
)  =  ( A  o.  B )
1710, 13, 163eqtr3g 2111 1  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    C_ wss 2945   `'ccnv 4372   dom cdm 4373   ran crn 4374    |` cres 4375    o. ccom 4377   Rel wrel 4378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385
This theorem is referenced by:  fcoi1  5098
  Copyright terms: Public domain W3C validator