ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cotr Unicode version

Theorem cotr 4736
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4380 . . . 4  |-  ( R  o.  R )  =  { <. x ,  z
>.  |  E. y
( x R y  /\  y R z ) }
21relopabi 4491 . . 3  |-  Rel  ( R  o.  R )
3 ssrel 4454 . . 3  |-  ( Rel  ( R  o.  R
)  ->  ( ( R  o.  R )  C_  R  <->  A. x A. z
( <. x ,  z
>.  e.  ( R  o.  R )  ->  <. x ,  z >.  e.  R
) ) )
42, 3ax-mp 7 . 2  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R ) )
5 vex 2605 . . . . . . . 8  |-  x  e. 
_V
6 vex 2605 . . . . . . . 8  |-  z  e. 
_V
75, 6opelco 4535 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( R  o.  R
)  <->  E. y ( x R y  /\  y R z ) )
8 df-br 3794 . . . . . . . 8  |-  ( x R z  <->  <. x ,  z >.  e.  R
)
98bicomi 130 . . . . . . 7  |-  ( <.
x ,  z >.  e.  R  <->  x R z )
107, 9imbi12i 237 . . . . . 6  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  ( E. y
( x R y  /\  y R z )  ->  x R
z ) )
11 19.23v 1805 . . . . . 6  |-  ( A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  ( E. y ( x R y  /\  y R z )  ->  x R z ) )
1210, 11bitr4i 185 . . . . 5  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. y ( ( x R y  /\  y R z )  ->  x R z ) )
1312albii 1400 . . . 4  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. z A. y ( ( x R y  /\  y R z )  ->  x R z ) )
14 alcom 1408 . . . 4  |-  ( A. z A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1513, 14bitri 182 . . 3  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1615albii 1400 . 2  |-  ( A. x A. z ( <.
x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
174, 16bitri 182 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283   E.wex 1422    e. wcel 1434    C_ wss 2974   <.cop 3409   class class class wbr 3793    o. ccom 4375   Rel wrel 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-rel 4378  df-co 4380
This theorem is referenced by:  xpidtr  4745  trin2  4746  dfer2  6173
  Copyright terms: Public domain W3C validator