ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  creur Unicode version

Theorem creur 8685
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem creur
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7730 . 2  |-  ( A  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w ) ) )
2 cru 8332 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
32ancoms 266 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
4 eqcom 2119 . . . . . . . . . 10  |-  ( ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) )  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) )
5 ancom 264 . . . . . . . . . 10  |-  ( ( y  =  w  /\  x  =  z )  <->  ( x  =  z  /\  y  =  w )
)
63, 4, 53bitr4g 222 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
( y  =  w  /\  x  =  z ) ) )
76anassrs 397 . . . . . . . 8  |-  ( ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  /\  y  e.  RR )  ->  (
( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  ( y  =  w  /\  x  =  z ) ) )
87rexbidva 2411 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( y  =  w  /\  x  =  z ) ) )
9 biidd 171 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  =  z  <->  x  =  z ) )
109ceqsrexv 2789 . . . . . . . 8  |-  ( w  e.  RR  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z
) )
1110ad2antlr 480 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( y  =  w  /\  x  =  z )  <->  x  =  z ) )
128, 11bitrd 187 . . . . . 6  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  x  e.  RR )  ->  ( E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
x  =  z ) )
1312ralrimiva 2482 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )
14 reu6i 2848 . . . . 5  |-  ( ( z  e.  RR  /\  A. x  e.  RR  ( E. y  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  x  =  z ) )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
1513, 14syldan 280 . . . 4  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  E! x  e.  RR  E. y  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
16 eqeq1 2124 . . . . . 6  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  <->  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) ) ) )
1716rexbidv 2415 . . . . 5  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  <->  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1817reubidv 2591 . . . 4  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  <->  E! x  e.  RR  E. y  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1915, 18syl5ibrcom 156 . . 3  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  ( A  =  ( z  +  ( _i  x.  w ) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
2019rexlimivv 2532 . 2  |-  ( E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w
) )  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
211, 20syl 14 1  |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   A.wral 2393   E.wrex 2394   E!wreu 2395  (class class class)co 5742   CCcc 7586   RRcr 7587   _ici 7590    + caddc 7591    x. cmul 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-ltxr 7773  df-sub 7903  df-neg 7904  df-reap 8305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator