ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebg Unicode version

Theorem csbiebg 3037
Description: Bidirectional conversion between an implicit class substitution hypothesis  x  =  A  ->  B  =  C and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
csbiebg.2  |-  F/_ x C
Assertion
Ref Expression
csbiebg  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebg
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2147 . . . 4  |-  ( a  =  A  ->  (
x  =  a  <->  x  =  A ) )
21imbi1d 230 . . 3  |-  ( a  =  A  ->  (
( x  =  a  ->  B  =  C )  <->  ( x  =  A  ->  B  =  C ) ) )
32albidv 1796 . 2  |-  ( a  =  A  ->  ( A. x ( x  =  a  ->  B  =  C )  <->  A. x
( x  =  A  ->  B  =  C ) ) )
4 csbeq1 3001 . . 3  |-  ( a  =  A  ->  [_ a  /  x ]_ B  = 
[_ A  /  x ]_ B )
54eqeq1d 2146 . 2  |-  ( a  =  A  ->  ( [_ a  /  x ]_ B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
6 vex 2684 . . 3  |-  a  e. 
_V
7 csbiebg.2 . . 3  |-  F/_ x C
86, 7csbieb 3036 . 2  |-  ( A. x ( x  =  a  ->  B  =  C )  <->  [_ a  /  x ]_ B  =  C )
93, 5, 8vtoclbg 2742 1  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   F/_wnfc 2266   [_csb 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator