ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbunig Unicode version

Theorem csbunig 3616
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunig
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 2935 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
2 sbcexg 2840 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
3 sbcang 2829 . . . . . . 7  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
4 sbcg 2855 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
5 sbcel2g 2899 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
64, 5anbi12d 450 . . . . . . 7  |-  ( A  e.  V  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
73, 6bitrd 181 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
87exbidv 1722 . . . . 5  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
92, 8bitrd 181 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
109abbidv 2171 . . 3  |-  ( A  e.  V  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
111, 10eqtrd 2088 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
12 df-uni 3609 . . 3  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
1312csbeq2i 2904 . 2  |-  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
14 df-uni 3609 . 2  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
1511, 13, 143eqtr4g 2113 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   [.wsbc 2787   [_csb 2880   U.cuni 3608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788  df-csb 2881  df-uni 3609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator