![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decaddci | Unicode version |
Description: Add two numerals ![]() ![]() |
Ref | Expression |
---|---|
decaddi.1 |
![]() ![]() ![]() ![]() |
decaddi.2 |
![]() ![]() ![]() ![]() |
decaddi.3 |
![]() ![]() ![]() ![]() |
decaddi.4 |
![]() ![]() ![]() ![]() ![]() |
decaddci.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
decaddci.6 |
![]() ![]() ![]() ![]() |
decaddci.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decaddci |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | decaddi.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | 0nn0 8359 |
. 2
![]() ![]() ![]() ![]() | |
4 | decaddi.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | decaddi.4 |
. 2
![]() ![]() ![]() ![]() ![]() | |
6 | 4 | dec0h 8568 |
. 2
![]() ![]() ![]() ![]() ![]() |
7 | 1 | nn0cni 8356 |
. . . . 5
![]() ![]() ![]() ![]() |
8 | 7 | addid1i 7306 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | oveq1i 5547 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | decaddci.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eqtri 2102 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | decaddci.6 |
. 2
![]() ![]() ![]() ![]() | |
13 | decaddci.7 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 8601 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-cnre 7138 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-sub 7337 df-inn 8096 df-2 8154 df-3 8155 df-4 8156 df-5 8157 df-6 8158 df-7 8159 df-8 8160 df-9 8161 df-n0 8345 df-dec 8548 |
This theorem is referenced by: decaddci2 8608 6t4e24 8652 7t3e21 8656 7t5e35 8658 7t6e42 8659 8t3e24 8662 8t4e32 8663 8t7e56 8666 8t8e64 8667 9t3e27 8669 9t4e36 8670 9t5e45 8671 9t6e54 8672 9t7e63 8673 9t8e72 8674 9t9e81 8675 |
Copyright terms: Public domain | W3C validator |