ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  declt Unicode version

Theorem declt 8454
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
declt.a  |-  A  e. 
NN0
declt.b  |-  B  e. 
NN0
declt.c  |-  C  e.  NN
declt.l  |-  B  < 
C
Assertion
Ref Expression
declt  |- ; A B  < ; A C

Proof of Theorem declt
StepHypRef Expression
1 10nn 8442 . . 3  |- ; 1 0  e.  NN
2 declt.a . . 3  |-  A  e. 
NN0
3 declt.b . . 3  |-  B  e. 
NN0
4 declt.c . . 3  |-  C  e.  NN
5 declt.l . . 3  |-  B  < 
C
61, 2, 3, 4, 5numlt 8451 . 2  |-  ( (; 1
0  x.  A )  +  B )  < 
( (; 1 0  x.  A
)  +  C )
7 dfdec10 8430 . 2  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
8 dfdec10 8430 . 2  |- ; A C  =  ( (; 1 0  x.  A
)  +  C )
96, 7, 83brtr4i 3820 1  |- ; A B  < ; A C
Colors of variables: wff set class
Syntax hints:    e. wcel 1409   class class class wbr 3792  (class class class)co 5540   0cc0 6947   1c1 6948    + caddc 6950    x. cmul 6952    < clt 7119   NNcn 7990   NN0cn0 8239  ;cdc 8427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-pnf 7121  df-mnf 7122  df-ltxr 7124  df-sub 7247  df-inn 7991  df-2 8049  df-3 8050  df-4 8051  df-5 8052  df-6 8053  df-7 8054  df-8 8055  df-9 8056  df-n0 8240  df-dec 8428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator