ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 Unicode version

Theorem dfin5 2953
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 2952 . 2  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
2 df-rab 2332 . 2  |-  { x  e.  A  |  x  e.  B }  =  {
x  |  ( x  e.  A  /\  x  e.  B ) }
31, 2eqtr4i 2079 1  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 101    = wceq 1259    e. wcel 1409   {cab 2042   {crab 2327    i^i cin 2944
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-rab 2332  df-in 2952
This theorem is referenced by:  nfin  3171  rabbi2dva  3173  bj-inex  10414
  Copyright terms: Public domain W3C validator