Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiota2 Unicode version

Theorem dfiota2 4896
 Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 4895 . 2
2 df-sn 3409 . . . . . 6
32eqeq2i 2066 . . . . 5
4 abbi 2167 . . . . 5
53, 4bitr4i 180 . . . 4
65abbii 2169 . . 3
76unieqi 3618 . 2
81, 7eqtri 2076 1
 Colors of variables: wff set class Syntax hints:   wb 102  wal 1257   wceq 1259  cab 2042  csn 3403  cuni 3608  cio 4893 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-sn 3409  df-uni 3609  df-iota 4895 This theorem is referenced by:  nfiota1  4897  nfiotadxy  4898  cbviota  4900  sb8iota  4902  iotaval  4906  iotanul  4910  fv2  5201
 Copyright terms: Public domain W3C validator