ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun2 Unicode version

Theorem dfiun2 3732
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
dfiun2.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiun2  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dfiun2
StepHypRef Expression
1 dfiun2g 3730 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
2 dfiun2.1 . . 3  |-  B  e. 
_V
32a1i 9 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2425 1  |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1285    e. wcel 1434   {cab 2069   E.wrex 2354   _Vcvv 2610   U.cuni 3621   U_ciun 3698
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-uni 3622  df-iun 3700
This theorem is referenced by:  funcnvuni  5019  fun11iun  5198  tfrlem8  5987
  Copyright terms: Public domain W3C validator