ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopg Unicode version

Theorem dfopg 3588
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )

Proof of Theorem dfopg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2619 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2619 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 df-3an 922 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  <->  ( ( A  e.  _V  /\  B  e.  _V )  /\  x  e.  { { A } ,  { A ,  B } } ) )
43baibr 863 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( x  e.  { { A } ,  { A ,  B } } 
<->  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) ) )
54abbidv 2200 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { x  |  x  e.  { { A } ,  { A ,  B } } }  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) } )
6 abid2 2203 . . . 4  |-  { x  |  x  e.  { { A } ,  { A ,  B } } }  =  { { A } ,  { A ,  B } }
7 df-op 3425 . . . . 5  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
87eqcomi 2087 . . . 4  |-  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  =  <. A ,  B >.
95, 6, 83eqtr3g 2138 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { { A } ,  { A ,  B } }  =  <. A ,  B >. )
109eqcomd 2088 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
111, 2, 10syl2an 283 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   {cab 2069   _Vcvv 2610   {csn 3416   {cpr 3417   <.cop 3419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-v 2612  df-op 3425
This theorem is referenced by:  dfop  3589  opexg  4011  opth1  4019  opth  4020  0nelop  4031  op1stbg  4256
  Copyright terms: Public domain W3C validator