ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfphi2 Unicode version

Theorem dfphi2 11823
Description: Alternate definition of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Distinct variable group:    x, N

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 9369 . 2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
2 phi1 11822 . . . . 5  |-  ( phi `  1 )  =  1
3 0z 9033 . . . . . 6  |-  0  e.  ZZ
4 hashsng 10512 . . . . . 6  |-  ( 0  e.  ZZ  ->  ( `  { 0 } )  =  1 )
53, 4ax-mp 5 . . . . 5  |-  ( `  {
0 } )  =  1
6 rabid2 2584 . . . . . . 7  |-  ( { 0 }  =  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 }  <->  A. x  e.  { 0 }  (
x  gcd  1 )  =  1 )
7 elsni 3515 . . . . . . . . 9  |-  ( x  e.  { 0 }  ->  x  =  0 )
87oveq1d 5757 . . . . . . . 8  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  ( 0  gcd  1 ) )
9 gcd1 11602 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0  gcd  1 )  =  1 )
103, 9ax-mp 5 . . . . . . . 8  |-  ( 0  gcd  1 )  =  1
118, 10syl6eq 2166 . . . . . . 7  |-  ( x  e.  { 0 }  ->  ( x  gcd  1 )  =  1 )
126, 11mprgbir 2467 . . . . . 6  |-  { 0 }  =  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 }
1312fveq2i 5392 . . . . 5  |-  ( `  {
0 } )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
142, 5, 133eqtr2i 2144 . . . 4  |-  ( phi `  1 )  =  ( `  { x  e.  { 0 }  | 
( x  gcd  1
)  =  1 } )
15 fveq2 5389 . . . 4  |-  ( N  =  1  ->  ( phi `  N )  =  ( phi `  1
) )
16 oveq2 5750 . . . . . . 7  |-  ( N  =  1  ->  (
0..^ N )  =  ( 0..^ 1 ) )
17 fzo01 9961 . . . . . . 7  |-  ( 0..^ 1 )  =  {
0 }
1816, 17syl6eq 2166 . . . . . 6  |-  ( N  =  1  ->  (
0..^ N )  =  { 0 } )
19 oveq2 5750 . . . . . . 7  |-  ( N  =  1  ->  (
x  gcd  N )  =  ( x  gcd  1 ) )
2019eqeq1d 2126 . . . . . 6  |-  ( N  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
x  gcd  1 )  =  1 ) )
2118, 20rabeqbidv 2655 . . . . 5  |-  ( N  =  1  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  =  { x  e. 
{ 0 }  | 
( x  gcd  1
)  =  1 } )
2221fveq2d 5393 . . . 4  |-  ( N  =  1  ->  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  { 0 }  |  ( x  gcd  1 )  =  1 } ) )
2314, 15, 223eqtr4a 2176 . . 3  |-  ( N  =  1  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
24 eluz2nn 9332 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
25 phival 11816 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
2624, 25syl 14 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
27 fzossfz 9910 . . . . . . . . . . 11  |-  ( 1..^ N )  C_  (
1 ... N )
2827a1i 9 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  C_  (
1 ... N ) )
29 sseqin2 3265 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 1 ... N
)  <->  ( ( 1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3028, 29sylib 121 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
31 fzo0ss1 9919 . . . . . . . . . 10  |-  ( 1..^ N )  C_  (
0..^ N )
32 sseqin2 3265 . . . . . . . . . 10  |-  ( ( 1..^ N )  C_  ( 0..^ N )  <->  ( (
0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N ) )
3331, 32mpbi 144 . . . . . . . . 9  |-  ( ( 0..^ N )  i^i  ( 1..^ N ) )  =  ( 1..^ N )
3430, 33syl6eqr 2168 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
1 ... N )  i^i  ( 1..^ N ) )  =  ( ( 0..^ N )  i^i  ( 1..^ N ) ) )
3534rabeqdv 2654 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( ( 1 ... N )  i^i  (
1..^ N ) )  |  ( x  gcd  N )  =  1 }  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 } )
36 inrab2 3319 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( ( 1 ... N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N )  =  1 }
37 inrab2 3319 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( ( 0..^ N )  i^i  ( 1..^ N ) )  |  ( x  gcd  N
)  =  1 }
3835, 36, 373eqtr4g 2175 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) ) )
39 phibndlem 11819 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
40 eluzelz 9303 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
41 fzoval 9893 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4240, 41syl 14 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1..^ N )  =  ( 1 ... ( N  -  1 ) ) )
4339, 42sseqtrrd 3106 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1..^ N ) )
44 df-ss 3054 . . . . . . 7  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1..^ N )  <->  ( { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  i^i  (
1..^ N ) )  =  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
4543, 44sylib 121 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  i^i  ( 1..^ N ) )  =  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )
46 gcd0id 11594 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
4740, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
48 eluzelre 9304 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
49 eluzge2nn0 9333 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN0 )
5049nn0ge0d 9001 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  2
)  ->  0  <_  N )
5148, 50absidd 10907 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
5247, 51eqtrd 2150 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =  N )
53 eluz2b3 9366 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
5453simprbi 273 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
5552, 54eqnetrd 2309 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 0  gcd  N )  =/=  1 )
5655adantr 274 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( 0  gcd  N )  =/=  1 )
577oveq1d 5757 . . . . . . . . . . . . . 14  |-  ( x  e.  { 0 }  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5857, 17eleq2s 2212 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =  ( 0  gcd  N ) )
5958neeq1d 2303 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ 1 )  ->  ( (
x  gcd  N )  =/=  1  <->  ( 0  gcd 
N )  =/=  1
) )
6056, 59syl5ibrcom 156 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  ->  ( x  gcd  N )  =/=  1 ) )
6160necon2bd 2343 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  -.  x  e.  ( 0..^ 1 ) ) )
62 simpr 109 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
63 1z 9048 . . . . . . . . . . . 12  |-  1  e.  ZZ
64 fzospliti 9921 . . . . . . . . . . . 12  |-  ( ( x  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  (
x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6562, 63, 64sylancl 409 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( x  e.  ( 0..^ 1 )  \/  x  e.  ( 1..^ N ) ) )
6665ord 698 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( -.  x  e.  ( 0..^ 1 )  ->  x  e.  ( 1..^ N ) ) )
6761, 66syld 45 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 0..^ N ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
6867ralrimiva 2482 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
69 rabss 3144 . . . . . . . 8  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  A. x  e.  ( 0..^ N ) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1..^ N ) ) )
7068, 69sylibr 133 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } 
C_  ( 1..^ N ) )
71 df-ss 3054 . . . . . . 7  |-  ( { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  C_  ( 1..^ N )  <->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7270, 71sylib 121 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 }  i^i  ( 1..^ N ) )  =  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7338, 45, 723eqtr3d 2158 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  =  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } )
7473fveq2d 5393 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
7526, 74eqtrd 2150 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N
)  =  1 } ) )
7623, 75jaoi 690 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( phi `  N
)  =  ( `  {
x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
771, 76sylbi 120 1  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { x  e.  ( 0..^ N )  |  ( x  gcd  N )  =  1 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 682    = wceq 1316    e. wcel 1465    =/= wne 2285   A.wral 2393   {crab 2397    i^i cin 3040    C_ wss 3041   {csn 3497   ` cfv 5093  (class class class)co 5742   0cc0 7588   1c1 7589    - cmin 7901   NNcn 8688   2c2 8739   ZZcz 9022   ZZ>=cuz 9294   ...cfz 9758  ..^cfzo 9887  ♯chash 10489   abscabs 10737    gcd cgcd 11562   phicphi 11813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-stab 801  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-fl 10011  df-mod 10064  df-seqfrec 10187  df-exp 10261  df-ihash 10490  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-dvds 11421  df-gcd 11563  df-phi 11814
This theorem is referenced by:  phimullem  11828  hashgcdeq  11831
  Copyright terms: Public domain W3C validator