Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfpr2 Unicode version

Theorem dfpr2 3436
 Description: Alternate definition of unordered pair. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfpr2
Distinct variable groups:   ,   ,

Proof of Theorem dfpr2
StepHypRef Expression
1 df-pr 3424 . 2
2 elun 3124 . . . 4
3 velsn 3434 . . . . 5
4 velsn 3434 . . . . 5
53, 4orbi12i 714 . . . 4
62, 5bitri 182 . . 3
76abbi2i 2197 . 2
81, 7eqtri 2103 1
 Colors of variables: wff set class Syntax hints:   wo 662   wceq 1285   wcel 1434  cab 2069   cun 2981  csn 3417  cpr 3418 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2987  df-sn 3423  df-pr 3424 This theorem is referenced by:  elprg  3437  nfpr  3461  pwsnss  3616  minmax  10297
 Copyright terms: Public domain W3C validator