Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 Unicode version

Theorem dfrab2 3246
 Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2358 . 2
2 inab 3239 . . 3
3 abid2 2200 . . . 4
43ineq1i 3170 . . 3
52, 4eqtr3i 2104 . 2
6 incom 3165 . 2
71, 5, 63eqtri 2106 1
 Colors of variables: wff set class Syntax hints:   wa 102   wceq 1285   wcel 1434  cab 2068  crab 2353   cin 2973 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rab 2358  df-v 2604  df-in 2980 This theorem is referenced by:  minmax  10250
 Copyright terms: Public domain W3C validator