ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3 Unicode version

Theorem dfrab3 3256
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2362 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 inab 3248 . 2  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  ph ) }
3 abid2 2203 . . 3  |-  { x  |  x  e.  A }  =  A
43ineq1i 3179 . 2  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  ( A  i^i  { x  | 
ph } )
51, 2, 43eqtr2i 2109 1  |-  { x  e.  A  |  ph }  =  ( A  i^i  { x  |  ph }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    e. wcel 1434   {cab 2069   {crab 2357    i^i cin 2981
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rab 2362  df-v 2612  df-in 2988
This theorem is referenced by:  notrab  3257  dfrab3ss  3258  dfif3  3381  dfse2  4748
  Copyright terms: Public domain W3C validator