![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | Unicode version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1687 and substitution for class variables df-sbc 2817. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2818. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-clab 2069 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2817 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | 3bitr3g 220 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-clab 2069 df-cleq 2075 df-clel 2078 df-sbc 2817 |
This theorem is referenced by: sbsbc 2820 sbc8g 2823 sbceq1a 2825 sbc5 2839 sbcng 2855 sbcimg 2856 sbcan 2857 sbcang 2858 sbcor 2859 sbcorg 2860 sbcbig 2861 sbcal 2866 sbcalg 2867 sbcex2 2868 sbcexg 2869 sbcel1v 2877 sbctt 2881 sbcralt 2891 sbcrext 2892 sbcralg 2893 sbcreug 2895 rspsbc 2897 rspesbca 2899 sbcel12g 2922 sbceqg 2923 sbcbrg 3842 csbopabg 3864 opelopabsb 4023 findes 4352 iota4 4915 csbiotag 4925 csbriotag 5511 nn0ind-raph 8545 uzind4s 8759 bezoutlemmain 10531 bezoutlemex 10534 |
Copyright terms: Public domain | W3C validator |