ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos3 Unicode version

Theorem dftpos3 5908
Description: Alternate definition of tpos when  F has relational domain. Compare df-cnv 4381. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3  |-  ( Rel 
dom  F  -> tpos  F  =  { <. <. x ,  y
>. ,  z >.  | 
<. y ,  x >. F z } )
Distinct variable group:    x, y, z, F

Proof of Theorem dftpos3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 relcnv 4731 . . . . . . . . . 10  |-  Rel  `' dom  F
2 dmtpos 5902 . . . . . . . . . . 11  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
32releqd 4452 . . . . . . . . . 10  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  <->  Rel  `' dom  F
) )
41, 3mpbiri 161 . . . . . . . . 9  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
5 reltpos 5896 . . . . . . . . 9  |-  Rel tpos  F
64, 5jctil 299 . . . . . . . 8  |-  ( Rel 
dom  F  ->  ( Rel tpos  F  /\  Rel  dom tpos  F ) )
7 relrelss 4872 . . . . . . . 8  |-  ( ( Rel tpos  F  /\  Rel  dom tpos  F )  <-> tpos  F  C_  ( ( _V  X.  _V )  X. 
_V ) )
86, 7sylib 131 . . . . . . 7  |-  ( Rel 
dom  F  -> tpos  F  C_  ( ( _V  X.  _V )  X.  _V )
)
98sseld 2972 . . . . . 6  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
10 elvvv 4431 . . . . . 6  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
119, 10syl6ib 154 . . . . 5  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  ->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. ) )
1211pm4.71rd 380 . . . 4  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  <->  ( E. x E. y E. z  w  =  <. <. x ,  y >. ,  z
>.  /\  w  e. tpos  F
) ) )
13 19.41vvv 1800 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <-> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F ) )
14 eleq1 2116 . . . . . . . 8  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e. tpos  F  <->  <. <. x ,  y >. ,  z >.  e. tpos  F
) )
15 df-br 3793 . . . . . . . . 9  |-  ( <.
x ,  y >.tpos  F z  <->  <. <. x ,  y >. ,  z
>.  e. tpos  F )
16 vex 2577 . . . . . . . . . 10  |-  x  e. 
_V
17 vex 2577 . . . . . . . . . 10  |-  y  e. 
_V
18 vex 2577 . . . . . . . . . 10  |-  z  e. 
_V
19 brtposg 5900 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
2016, 17, 18, 19mp3an 1243 . . . . . . . . 9  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
2115, 20bitr3i 179 . . . . . . . 8  |-  ( <. <. x ,  y >. ,  z >.  e. tpos  F  <->  <.
y ,  x >. F z )
2214, 21syl6bb 189 . . . . . . 7  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e. tpos  F  <->  <.
y ,  x >. F z ) )
2322pm5.32i 435 . . . . . 6  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  w  e. tpos  F
)  <->  ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
24233exbii 1514 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <->  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
2513, 24bitr3i 179 . . . 4  |-  ( ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <->  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
2612, 25syl6bb 189 . . 3  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  <. y ,  x >. F z ) ) )
2726abbi2dv 2172 . 2  |-  ( Rel 
dom  F  -> tpos  F  =  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  <. y ,  x >. F z ) } )
28 df-oprab 5544 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  <. y ,  x >. F z }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) }
2927, 28syl6eqr 2106 1  |-  ( Rel 
dom  F  -> tpos  F  =  { <. <. x ,  y
>. ,  z >.  | 
<. y ,  x >. F z } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   _Vcvv 2574    C_ wss 2945   <.cop 3406   class class class wbr 3792    X. cxp 4371   `'ccnv 4372   dom cdm 4373   Rel wrel 4378   {coprab 5541  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-oprab 5544  df-tpos 5891
This theorem is referenced by:  tposoprab  5926
  Copyright terms: Public domain W3C validator