Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif Unicode version

Theorem difdif 3098
 Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif

Proof of Theorem difdif
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . 3
2 pm4.45im 327 . . . 4
3 imanim 819 . . . . . 6
4 eldif 2983 . . . . . 6
53, 4sylnibr 635 . . . . 5
65anim2i 334 . . . 4
72, 6sylbi 119 . . 3
81, 7impbii 124 . 2
98difeqri 3093 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 102   wceq 1285   wcel 1434   cdif 2971 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-dif 2976 This theorem is referenced by:  dif0  3321
 Copyright terms: Public domain W3C validator