Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12i Unicode version

Theorem difeq12i 3089
 Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1
difeq12i.2
Assertion
Ref Expression
difeq12i

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3
21difeq1i 3087 . 2
3 difeq12i.2 . . 3
43difeq2i 3088 . 2
52, 4eqtri 2102 1
 Colors of variables: wff set class Syntax hints:   wceq 1285   cdif 2971 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rab 2358  df-dif 2976 This theorem is referenced by:  difrab  3239  imadiflem  5003  imadif  5004
 Copyright terms: Public domain W3C validator