ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn Unicode version

Theorem diffisn 6381
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )

Proof of Theorem diffisn
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6272 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 117 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 265 . 2  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. n  e.  om  A  ~~  n )
4 elex2 2587 . . . . . . . . 9  |-  ( B  e.  A  ->  E. x  x  e.  A )
54adantl 266 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. x  x  e.  A )
6 fin0 6373 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
76adantr 265 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
85, 7mpbird 160 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  A  =/=  (/) )
98adantr 265 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  =/=  (/) )
109neneqd 2241 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  =  (/) )
11 simplrr 496 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
12 en0 6306 . . . . . . . . 9  |-  ( n 
~~  (/)  <->  n  =  (/) )
1312biimpri 128 . . . . . . . 8  |-  ( n  =  (/)  ->  n  ~~  (/) )
1413adantl 266 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  ~~  (/) )
15 entr 6295 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~~  (/) )  ->  A  ~~  (/) )
1611, 14, 15syl2anc 397 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
17 en0 6306 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
1816, 17sylib 131 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
1910, 18mtand 601 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  =  (/) )
20 nn0suc 4355 . . . . . 6  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
2120orcomd 658 . . . . 5  |-  ( n  e.  om  ->  ( E. m  e.  om  n  =  suc  m  \/  n  =  (/) ) )
2221ad2antrl 467 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  \/  n  =  (/) ) )
2319, 22ecased 1255 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  n  =  suc  m )
24 nnfi 6364 . . . . 5  |-  ( m  e.  om  ->  m  e.  Fin )
2524ad2antrl 467 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  Fin )
26 simprl 491 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  om )
27 simplrr 496 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  n )
28 breq2 3796 . . . . . . 7  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2928ad2antll 468 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
3027, 29mpbid 139 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  suc  m )
31 simpllr 494 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  B  e.  A )
32 dif1en 6368 . . . . 5  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  B  e.  A )  ->  ( A  \  { B } )  ~~  m
)
3326, 30, 31, 32syl3anc 1146 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  ~~  m
)
34 enfii 6366 . . . 4  |-  ( ( m  e.  Fin  /\  ( A  \  { B } )  ~~  m
)  ->  ( A  \  { B } )  e.  Fin )
3525, 33, 34syl2anc 397 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  e.  Fin )
3623, 35rexlimddv 2454 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  \  { B } )  e.  Fin )
373, 36rexlimddv 2454 1  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    = wceq 1259   E.wex 1397    e. wcel 1409    =/= wne 2220   E.wrex 2324    \ cdif 2942   (/)c0 3252   {csn 3403   class class class wbr 3792   suc csuc 4130   omcom 4341    ~~ cen 6250   Fincfn 6252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-er 6137  df-en 6253  df-fin 6255
This theorem is referenced by:  diffifi  6382
  Copyright terms: Public domain W3C validator