ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest Unicode version

Theorem diffitest 6411
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form  -.  ph is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove  A  e.  Fin  ->  ( A  \  B
)  e.  Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1  |-  A. a  e.  Fin  A. b ( a  \  b )  e.  Fin
Assertion
Ref Expression
diffitest  |-  ( -. 
ph  \/  -.  -.  ph )
Distinct variable groups:    a, b    ph, b
Allowed substitution hint:    ph( a)

Proof of Theorem diffitest
Dummy variables  x  n  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3907 . . . . . 6  |-  (/)  e.  _V
2 snfig 6350 . . . . . 6  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 7 . . . . 5  |-  { (/) }  e.  Fin
4 diffitest.1 . . . . 5  |-  A. a  e.  Fin  A. b ( a  \  b )  e.  Fin
5 difeq1 3084 . . . . . . . 8  |-  ( a  =  { (/) }  ->  ( a  \  b )  =  ( { (/) } 
\  b ) )
65eleq1d 2148 . . . . . . 7  |-  ( a  =  { (/) }  ->  ( ( a  \  b
)  e.  Fin  <->  ( { (/)
}  \  b )  e.  Fin ) )
76albidv 1746 . . . . . 6  |-  ( a  =  { (/) }  ->  ( A. b ( a 
\  b )  e. 
Fin 
<-> 
A. b ( {
(/) }  \  b
)  e.  Fin )
)
87rspcv 2698 . . . . 5  |-  ( {
(/) }  e.  Fin  ->  ( A. a  e. 
Fin  A. b ( a 
\  b )  e. 
Fin  ->  A. b ( {
(/) }  \  b
)  e.  Fin )
)
93, 4, 8mp2 16 . . . 4  |-  A. b
( { (/) }  \ 
b )  e.  Fin
10 rabexg 3923 . . . . . 6  |-  ( {
(/) }  e.  Fin  ->  { x  e.  { (/)
}  |  ph }  e.  _V )
113, 10ax-mp 7 . . . . 5  |-  { x  e.  { (/) }  |  ph }  e.  _V
12 difeq2 3085 . . . . . 6  |-  ( b  =  { x  e. 
{ (/) }  |  ph }  ->  ( { (/) } 
\  b )  =  ( { (/) }  \  { x  e.  { (/) }  |  ph } ) )
1312eleq1d 2148 . . . . 5  |-  ( b  =  { x  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  \  b
)  e.  Fin  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  e.  Fin ) )
1411, 13spcv 2692 . . . 4  |-  ( A. b ( { (/) } 
\  b )  e. 
Fin  ->  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  e.  Fin )
159, 14ax-mp 7 . . 3  |-  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  e.  Fin
16 isfi 6300 . . 3  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  e.  Fin  <->  E. n  e.  om  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ~~  n
)
1715, 16mpbi 143 . 2  |-  E. n  e.  om  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ~~  n
18 0elnn 4360 . . . . 5  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
19 breq2 3791 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  ~~  (/) ) )
20 en0 6334 . . . . . . . . . 10  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  (/)  <->  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  =  (/) )
2119, 20syl6bb 194 . . . . . . . . 9  |-  ( n  =  (/)  ->  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  =  (/) ) )
2221biimpac 292 . . . . . . . 8  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/) )
23 rabeq0 3275 . . . . . . . . 9  |-  ( { x  e.  { (/) }  |  -.  ph }  =  (/)  <->  A. x  e.  { (/)
}  -.  -.  ph )
24 notrab 3242 . . . . . . . . . 10  |-  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  =  {
x  e.  { (/) }  |  -.  ph }
2524eqeq1i 2089 . . . . . . . . 9  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/)  <->  { x  e.  { (/)
}  |  -.  ph }  =  (/) )
261snm 3512 . . . . . . . . . 10  |-  E. w  w  e.  { (/) }
27 r19.3rmv 3333 . . . . . . . . . 10  |-  ( E. w  w  e.  { (/)
}  ->  ( -.  -.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph ) )
2826, 27ax-mp 7 . . . . . . . . 9  |-  ( -. 
-.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph )
2923, 25, 283bitr4i 210 . . . . . . . 8  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/)  <->  -.  -.  ph )
3022, 29sylib 120 . . . . . . 7  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  -.  -.  ph )
3130olcd 686 . . . . . 6  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  ( -.  ph  \/  -.  -.  ph ) )
32 ensym 6320 . . . . . . . 8  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  ->  n  ~~  ( { (/) }  \  { x  e.  { (/) }  |  ph } ) )
33 elex2 2616 . . . . . . . 8  |-  ( (/)  e.  n  ->  E. w  w  e.  n )
34 enm 6354 . . . . . . . 8  |-  ( ( n  ~~  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  /\  E. w  w  e.  n
)  ->  E. y 
y  e.  ( {
(/) }  \  { x  e.  { (/) }  |  ph } ) )
3532, 33, 34syl2an 283 . . . . . . 7  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (/)  e.  n
)  ->  E. y 
y  e.  ( {
(/) }  \  { x  e.  { (/) }  |  ph } ) )
36 biidd 170 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( -.  ph  <->  -.  ph ) )
3736elrab 2750 . . . . . . . . . . 11  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  <->  ( y  e. 
{ (/) }  /\  -.  ph ) )
3837simprbi 269 . . . . . . . . . 10  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  -.  ph )
3938orcd 685 . . . . . . . . 9  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  ( -.  ph  \/  -.  -.  ph ) )
4039, 24eleq2s 2174 . . . . . . . 8  |-  ( y  e.  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ->  ( -.  ph  \/  -.  -.  ph ) )
4140exlimiv 1530 . . . . . . 7  |-  ( E. y  y  e.  ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  -.  -.  ph )
)
4235, 41syl 14 . . . . . 6  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (/)  e.  n
)  ->  ( -.  ph  \/  -.  -.  ph ) )
4331, 42jaodan 744 . . . . 5  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (
n  =  (/)  \/  (/)  e.  n
) )  ->  ( -.  ph  \/  -.  -.  ph ) )
4418, 43sylan2 280 . . . 4  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  e.  om )  ->  ( -.  ph  \/  -.  -.  ph ) )
4544ancoms 264 . . 3  |-  ( ( n  e.  om  /\  ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n )  -> 
( -.  ph  \/  -.  -.  ph ) )
4645rexlimiva 2473 . 2  |-  ( E. n  e.  om  ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  ->  ( -.  ph  \/  -.  -.  ph ) )
4717, 46ax-mp 7 1  |-  ( -. 
ph  \/  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    \/ wo 662   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2349   E.wrex 2350   {crab 2353   _Vcvv 2602    \ cdif 2971   (/)c0 3252   {csn 3400   class class class wbr 3787   omcom 4333    ~~ cen 6278   Fincfn 6280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-br 3788  df-opab 3842  df-id 4050  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-1o 6059  df-er 6165  df-en 6281  df-fin 6283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator