ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopab Unicode version

Theorem difopab 4517
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem difopab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4512 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 reldif 4505 . . 3  |-  ( Rel 
{ <. x ,  y
>.  |  ph }  ->  Rel  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } ) )
31, 2ax-mp 7 . 2  |-  Rel  ( { <. x ,  y
>.  |  ph }  \  { <. x ,  y
>.  |  ps } )
4 relopab 4512 . 2  |-  Rel  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
5 sbcan 2865 . . . 4  |-  ( [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
6 sbcan 2865 . . . . 5  |-  ( [. w  /  y ]. ( ph  /\  -.  ps )  <->  (
[. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
76sbcbii 2882 . . . 4  |-  ( [. z  /  x ]. [. w  /  y ]. ( ph  /\  -.  ps )  <->  [. z  /  x ]. ( [. w  /  y ]. ph  /\  [. w  /  y ].  -.  ps ) )
8 opelopabsb 4043 . . . . 5  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. w  / 
y ]. ph )
9 vex 2613 . . . . . . 7  |-  z  e. 
_V
10 sbcng 2863 . . . . . . 7  |-  ( z  e.  _V  ->  ( [. z  /  x ].  -.  [. w  / 
y ]. ps  <->  -.  [. z  /  x ]. [. w  /  y ]. ps ) )
119, 10ax-mp 7 . . . . . 6  |-  ( [. z  /  x ].  -.  [. w  /  y ]. ps 
<->  -.  [. z  /  x ]. [. w  / 
y ]. ps )
12 vex 2613 . . . . . . . 8  |-  w  e. 
_V
13 sbcng 2863 . . . . . . . 8  |-  ( w  e.  _V  ->  ( [. w  /  y ].  -.  ps  <->  -.  [. w  /  y ]. ps ) )
1412, 13ax-mp 7 . . . . . . 7  |-  ( [. w  /  y ].  -.  ps 
<->  -.  [. w  / 
y ]. ps )
1514sbcbii 2882 . . . . . 6  |-  ( [. z  /  x ]. [. w  /  y ].  -.  ps 
<-> 
[. z  /  x ].  -.  [. w  / 
y ]. ps )
16 opelopabsb 4043 . . . . . . 7  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ]. ps )
1716notbii 627 . . . . . 6  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  -.  [. z  /  x ]. [. w  /  y ]. ps )
1811, 15, 173bitr4ri 211 . . . . 5  |-  ( -. 
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ps }  <->  [. z  /  x ]. [. w  / 
y ].  -.  ps )
198, 18anbi12i 448 . . . 4  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  ( [. z  /  x ]. [. w  /  y ]. ph  /\  [. z  /  x ]. [. w  /  y ].  -.  ps ) )
205, 7, 193bitr4ri 211 . . 3  |-  ( (
<. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  /\  -.  <. z ,  w >.  e.  { <. x ,  y >.  |  ps } )  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
21 eldif 2991 . . 3  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  /\  -.  <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ps } ) )
22 opelopabsb 4043 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }  <->  [. z  /  x ]. [. w  / 
y ]. ( ph  /\  -.  ps ) )
2320, 21, 223bitr4i 210 . 2  |-  ( <.
z ,  w >.  e.  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  (
ph  /\  -.  ps ) } )
243, 4, 23eqrelriiv 4480 1  |-  ( {
<. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  /\ 
-.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   _Vcvv 2610   [.wsbc 2824    \ cdif 2979   <.cop 3419   {copab 3858   Rel wrel 4396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-opab 3860  df-xp 4397  df-rel 4398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator