ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diftpsn3 Unicode version

Theorem diftpsn3 3529
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
diftpsn3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )

Proof of Theorem diftpsn3
StepHypRef Expression
1 df-tp 3408 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
21a1i 9 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
32difeq1d 3090 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  ( ( { A ,  B }  u.  { C } ) 
\  { C }
) )
4 difundir 3218 . . 3  |-  ( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )
54a1i 9 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) ) )
6 df-pr 3407 . . . . . . . . 9  |-  { A ,  B }  =  ( { A }  u.  { B } )
76a1i 9 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A }  u.  { B } ) )
87ineq1d 3167 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  ( ( { A }  u.  { B } )  i^i  { C }
) )
9 incom 3159 . . . . . . . . 9  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( { C }  i^i  ( { A }  u.  { B } ) )
10 indi 3212 . . . . . . . . 9  |-  ( { C }  i^i  ( { A }  u.  { B } ) )  =  ( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )
119, 10eqtri 2102 . . . . . . . 8  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B } ) )
1211a1i 9 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B }
) ) )
13 necom 2330 . . . . . . . . . . 11  |-  ( A  =/=  C  <->  C  =/=  A )
14 disjsn2 3457 . . . . . . . . . . 11  |-  ( C  =/=  A  ->  ( { C }  i^i  { A } )  =  (/) )
1513, 14sylbi 119 . . . . . . . . . 10  |-  ( A  =/=  C  ->  ( { C }  i^i  { A } )  =  (/) )
1615adantr 270 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { A } )  =  (/) )
17 necom 2330 . . . . . . . . . . 11  |-  ( B  =/=  C  <->  C  =/=  B )
18 disjsn2 3457 . . . . . . . . . . 11  |-  ( C  =/=  B  ->  ( { C }  i^i  { B } )  =  (/) )
1917, 18sylbi 119 . . . . . . . . . 10  |-  ( B  =/=  C  ->  ( { C }  i^i  { B } )  =  (/) )
2019adantl 271 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { B } )  =  (/) )
2116, 20uneq12d 3128 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  ( (/)  u.  (/) ) )
22 unidm 3116 . . . . . . . 8  |-  ( (/)  u.  (/) )  =  (/)
2321, 22syl6eq 2130 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  (/) )
248, 12, 233eqtrd 2118 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
25 disj3 3297 . . . . . 6  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  { A ,  B }  =  ( { A ,  B }  \  { C }
) )
2624, 25sylib 120 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A ,  B }  \  { C } ) )
2726eqcomd 2087 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  \  { C } )  =  { A ,  B }
)
28 difid 3313 . . . . 5  |-  ( { C }  \  { C } )  =  (/)
2928a1i 9 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  \  { C } )  =  (/) )
3027, 29uneq12d 3128 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  ( { A ,  B }  u.  (/) ) )
31 un0 3279 . . 3  |-  ( { A ,  B }  u.  (/) )  =  { A ,  B }
3230, 31syl6eq 2130 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  { A ,  B } )
333, 5, 323eqtrd 2118 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    =/= wne 2246    \ cdif 2971    u. cun 2972    i^i cin 2973   (/)c0 3252   {csn 3400   {cpr 3401   {ctp 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-sn 3406  df-pr 3407  df-tp 3408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator