ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl Unicode version

Theorem distrlem5prl 7394
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )

Proof of Theorem distrlem5prl
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7380 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1001 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 7380 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1000 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-iplp 7276 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
6 addclnq 7183 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelvl 7320 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 408 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
9 df-imp 7277 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  x  =  ( g  .Q  h
) ) } ,  { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  x  =  ( g  .Q  h
) ) } >. )
10 mulclnq 7184 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelvl 7320 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( 1st `  ( A  .P.  C ) )  <->  E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
) ) )
12113adant2 1000 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( 1st `  ( A  .P.  C
) )  <->  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) )
1312anbi2d 459 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  <->  ( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) ) )
14 df-imp 7277 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  f  =  ( g  .Q  h
) ) } >. )
1514, 10genpelvl 7320 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( 1st `  ( A  .P.  B ) )  <->  E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
) ) )
16153adant3 1001 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  <->  E. x  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y ) ) )
17 distrlem4prl 7392 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
18 oveq12 5783 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2151 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2202 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2119, 20syl6bi 162 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2221imp 123 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2317, 22syl5ibrcom 156 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2423exp4b 364 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2524com3l 81 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2625exp4b 364 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( x  .Q  y )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2726com23 78 . . . . . . . . . 10  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
v  =  ( x  .Q  y )  -> 
( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2827rexlimivv 2555 . . . . . . . . 9  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2928rexlimdvv 2556 . . . . . . . 8  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3029com3r 79 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
)  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3116, 30sylbid 149 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
)  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3231impd 252 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3313, 32sylbid 149 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3433rexlimdvv 2556 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
358, 34sylbid 149 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
3635ssrdv 3103 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   ` cfv 5123  (class class class)co 5774   1stc1st 6036    +Q cplq 7090    .Q cmq 7091   P.cnp 7099    +P. cpp 7101    .P. cmp 7102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-imp 7277
This theorem is referenced by:  distrprg  7396
  Copyright terms: Public domain W3C validator