ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb Unicode version

Theorem divalgb 10532
Description: Express the division algorithm as stated in divalg 10531 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalgb
StepHypRef Expression
1 zsubcl 8525 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( N  -  r
)  e.  ZZ )
2 divides 10405 . . . . . . . . . . . 12  |-  ( ( D  e.  ZZ  /\  ( N  -  r
)  e.  ZZ )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
31, 2sylan2 280 . . . . . . . . . . 11  |-  ( ( D  e.  ZZ  /\  ( N  e.  ZZ  /\  r  e.  ZZ ) )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
433impb 1135 . . . . . . . . . 10  |-  ( ( D  e.  ZZ  /\  N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
543com12 1143 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
6 zcn 8489 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 zcn 8489 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  ZZ  ->  r  e.  CC )
8 zmulcl 8537 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  ZZ )
98zcnd 8603 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  CC )
10 subadd 7430 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  CC  /\  r  e.  CC  /\  (
q  x.  D )  e.  CC )  -> 
( ( N  -  r )  =  ( q  x.  D )  <-> 
( r  +  ( q  x.  D ) )  =  N ) )
116, 7, 9, 10syl3an 1212 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( r  +  ( q  x.  D ) )  =  N ) )
12 addcom 7364 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( r  +  ( q  x.  D
) )  =  ( ( q  x.  D
)  +  r ) )
137, 9, 12syl2an 283 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ZZ  /\  ( q  e.  ZZ  /\  D  e.  ZZ ) )  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
14133adant1 957 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
1514eqeq1d 2091 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
r  +  ( q  x.  D ) )  =  N  <->  ( (
q  x.  D )  +  r )  =  N ) )
1611, 15bitrd 186 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( (
q  x.  D )  +  r )  =  N ) )
17 eqcom 2085 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  r )  =  ( q  x.  D )  <->  ( q  x.  D )  =  ( N  -  r ) )
18 eqcom 2085 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  x.  D
)  +  r )  =  N  <->  N  =  ( ( q  x.  D )  +  r ) )
1916, 17, 183bitr3g 220 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
q  x.  D )  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
20193expia 1141 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  (
( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2120expcomd 1371 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  e.  ZZ  ->  ( q  e.  ZZ  ->  ( ( q  x.  D )  =  ( N  -  r )  <-> 
N  =  ( ( q  x.  D )  +  r ) ) ) ) )
22213impia 1136 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  (
q  e.  ZZ  ->  ( ( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2322imp 122 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  /\  q  e.  ZZ )  ->  ( ( q  x.  D )  =  ( N  -  r
)  <->  N  =  (
( q  x.  D
)  +  r ) ) )
2423rexbidva 2370 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
25243com23 1145 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
265, 25bitrd 186 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
2726anbi2d 452 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  (
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r
) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) ) )
28 df-3an 922 . . . . . . . . 9  |-  ( ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
2928rexbii 2378 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( ( 0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
30 r19.42v 2516 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  r ) )  <-> 
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
3129, 30bitri 182 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) )
3227, 31syl6rbbr 197 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  D  ||  ( N  -  r
) ) ) )
33 anass 393 . . . . . 6  |-  ( ( ( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
3432, 33syl6bb 194 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) ) )
35343expa 1139 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ )  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  ( 0  <_ 
r  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) ) ) )
3635reubidva 2541 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  ZZ  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
37 elnn0z 8497 . . . . . . 7  |-  ( r  e.  NN0  <->  ( r  e.  ZZ  /\  0  <_ 
r ) )
3837anbi1i 446 . . . . . 6  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( ( r  e.  ZZ  /\  0  <_ 
r )  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
39 anass 393 . . . . . 6  |-  ( ( ( r  e.  ZZ  /\  0  <_  r )  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4038, 39bitri 182 . . . . 5  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4140eubii 1952 . . . 4  |-  ( E! r ( r  e. 
NN0  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )  <->  E! r
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
42 df-reu 2360 . . . 4  |-  ( E! r  e.  NN0  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) )  <->  E! r
( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
43 df-reu 2360 . . . 4  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r ( r  e.  ZZ  /\  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4441, 42, 433bitr4ri 211 . . 3  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
4536, 44syl6bb 194 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
46453adant3 959 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   E!weu 1943    =/= wne 2249   E.wrex 2354   E!wreu 2355   class class class wbr 3805   ` cfv 4952  (class class class)co 5563   CCcc 7093   0cc0 7095    + caddc 7098    x. cmul 7100    < clt 7267    <_ cle 7268    - cmin 7398   NN0cn0 8407   ZZcz 8484   abscabs 10084    || cdvds 10403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-dvds 10404
This theorem is referenced by:  divalg2  10533
  Copyright terms: Public domain W3C validator