![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divclapd | Unicode version |
Description: Closure law for division. (Contributed by Jim Kingdon, 29-Feb-2020.) |
Ref | Expression |
---|---|
divcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
divcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
divclapd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
divclapd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | divcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | divclapd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | divclap 7903 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1170 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-mulrcl 7207 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-precex 7218 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-apti 7223 ax-pre-ltadd 7224 ax-pre-mulgt0 7225 ax-pre-mulext 7226 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-id 4076 df-po 4079 df-iso 4080 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-iota 4917 df-fun 4954 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-reap 7812 df-ap 7819 df-div 7898 |
This theorem is referenced by: dmdcanap2d 8044 divfnzn 8857 qapne 8875 negqmod0 9483 imval 9956 qredeq 10703 |
Copyright terms: Public domain | W3C validator |