ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdcoprmex Unicode version

Theorem divgcdcoprmex 11783
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Distinct variable groups:    A, a, b    B, a, b    M, a, b

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  ZZ )
21anim2i 339 . . . 4  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
3 zeqzmulgcd 11659 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) ) )
42, 3syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
543adant3 1001 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B ) ) )
6 zeqzmulgcd 11659 . . . . 5  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
76adantlr 468 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  =/=  0 )  /\  A  e.  ZZ )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )
87ancoms 266 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
983adant3 1001 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A ) ) )
10 reeanv 2600 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  <->  ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) ) )
11 zcn 9059 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
1211adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  a  e.  CC )
13 gcdcl 11655 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
142, 13syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  NN0 )
1514nn0cnd 9032 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  e.  CC )
16153adant3 1001 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
1716adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
1812, 17mulcomd 7787 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  a ) )
19 simp3 983 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  M  =  ( A  gcd  B ) )
2019eqcomd 2145 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  M )
2120oveq1d 5789 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  gcd  B )  x.  a )  =  ( M  x.  a ) )
2221adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
( A  gcd  B
)  x.  a )  =  ( M  x.  a ) )
2318, 22eqtrd 2172 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  (
a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) )
2423ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) )
25 eqeq1 2146 . . . . . . . . . 10  |-  ( A  =  ( a  x.  ( A  gcd  B
) )  ->  ( A  =  ( M  x.  a )  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2625adantr 274 . . . . . . . . 9  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  -> 
( A  =  ( M  x.  a )  <-> 
( a  x.  ( A  gcd  B ) )  =  ( M  x.  a ) ) )
2726adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  <->  ( a  x.  ( A  gcd  B
) )  =  ( M  x.  a ) ) )
2824, 27mpbird 166 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  A  =  ( M  x.  a ) )
29 simpr 109 . . . . . . . 8  |-  ( ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  B  =  ( b  x.  ( B  gcd  A
) ) )
302ancomd 265 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  e.  ZZ  /\  A  e.  ZZ ) )
31 gcdcom 11662 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  gcd  A
)  =  ( A  gcd  B ) )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
33323adant3 1001 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( B  gcd  A )  =  ( A  gcd  B ) )
3433oveq2d 5790 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( b  x.  ( B  gcd  A
) )  =  ( b  x.  ( A  gcd  B ) ) )
3534adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( b  x.  ( A  gcd  B
) ) )
36 zcn 9059 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
3736adantl 275 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  b  e.  CC )
38143adant3 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
3938adantr 274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
4039nn0cnd 9032 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
4137, 40mulcomd 7787 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( ( A  gcd  B )  x.  b ) )
4220adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  M )
4342oveq1d 5789 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
)  x.  b )  =  ( M  x.  b ) )
4435, 41, 433eqtrd 2176 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4544adantlr 468 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( B  gcd  A ) )  =  ( M  x.  b ) )
4629, 45sylan9eqr 2194 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  B  =  ( M  x.  b ) )
47 zcn 9059 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
48473ad2ant1 1002 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  CC )
4948ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  A  e.  CC )
5012adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  a  e.  CC )
51 simp1 981 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  A  e.  ZZ )
5213ad2ant2 1003 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  ZZ )
5351, 52gcdcld 11657 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  NN0 )
5453nn0cnd 9032 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  e.  CC )
5554ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  CC )
56 gcdeq0 11665 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  <->  ( A  =  0  /\  B  =  0 ) ) )
57 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =  0  /\  B  =  0 )  ->  B  =  0 )
5856, 57syl6bi 162 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  0  ->  B  =  0 ) )
5958necon3d 2352 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  =/=  0  ->  ( A  gcd  B
)  =/=  0 ) )
6059impr 376 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  gcd  B )  =/=  0
)
61603adant3 1001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =/=  0
)
6261ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =/=  0 )
6338ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e. 
NN0 )
6463nn0zd 9171 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  e.  ZZ )
65 0zd 9066 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  0  e.  ZZ )
66 zapne 9125 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  gcd  B ) #  0  <->  ( A  gcd  B )  =/=  0
) )
6764, 65, 66syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  gcd  B
) #  0  <->  ( A  gcd  B )  =/=  0
) )
6862, 67mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B ) #  0 )
6949, 50, 55, 68divmulap3d 8585 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  /  ( A  gcd  B ) )  =  a  <->  A  =  ( a  x.  ( A  gcd  B ) ) ) )
7069bicomd 140 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  =  ( a  x.  ( A  gcd  B
) )  <->  ( A  /  ( A  gcd  B ) )  =  a ) )
71 zcn 9059 . . . . . . . . . . . . . . 15  |-  ( B  e.  ZZ  ->  B  e.  CC )
7271adantr 274 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  B  =/=  0 )  ->  B  e.  CC )
73723ad2ant2 1003 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  B  e.  CC )
7473ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  B  e.  CC )
7536adantl 275 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  b  e.  CC )
7674, 75, 55, 68divmulap3d 8585 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( B  /  ( A  gcd  B ) )  =  b  <->  B  =  ( b  x.  ( A  gcd  B ) ) ) )
7723adant3 1001 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
78 gcdcom 11662 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
7977, 78syl 14 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  gcd  B )  =  ( B  gcd  A ) )
8079ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
8180oveq2d 5790 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
b  x.  ( A  gcd  B ) )  =  ( b  x.  ( B  gcd  A
) ) )
8281eqeq2d 2151 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( A  gcd  B
) )  <->  B  =  ( b  x.  ( B  gcd  A ) ) ) )
8376, 82bitr2d 188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  ( B  =  ( b  x.  ( B  gcd  A
) )  <->  ( B  /  ( A  gcd  B ) )  =  b ) )
8470, 83anbi12d 464 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  <->  ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b ) ) )
85 3anass 966 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) ) )
8685biimpri 132 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
87863adant3 1001 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) )
88 divgcdcoprm0 11782 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
8987, 88syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
90 oveq12 5783 . . . . . . . . . . . 12  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  ( a  gcd  b
) )
9190eqeq1d 2148 . . . . . . . . . . 11  |-  ( ( ( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  <->  ( a  gcd  b )  =  1 ) )
9289, 91syl5ibcom 154 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( (
( A  /  ( A  gcd  B ) )  =  a  /\  ( B  /  ( A  gcd  B ) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9392ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( ( A  / 
( A  gcd  B
) )  =  a  /\  ( B  / 
( A  gcd  B
) )  =  b )  ->  ( a  gcd  b )  =  1 ) )
9484, 93sylbid 149 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( a  gcd  b )  =  1 ) )
9594imp 123 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( a  gcd  b )  =  1 )
9628, 46, 953jca 1161 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  /\  ( A  =  ( a  x.  ( A  gcd  B
) )  /\  B  =  ( b  x.  ( B  gcd  A
) ) ) )  ->  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
9796ex 114 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  /\  b  e.  ZZ )  ->  (
( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
9897reximdva 2534 . . . 4  |-  ( ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  /\  a  e.  ZZ )  ->  ( E. b  e.  ZZ  ( A  =  (
a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
9998reximdva 2534 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  x.  ( A  gcd  B ) )  /\  B  =  ( b  x.  ( B  gcd  A ) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) ) )
10010, 99syl5bir 152 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  ( ( E. a  e.  ZZ  A  =  ( a  x.  ( A  gcd  B
) )  /\  E. b  e.  ZZ  B  =  ( b  x.  ( B  gcd  A
) ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a )  /\  B  =  ( M  x.  b )  /\  (
a  gcd  b )  =  1 ) ) )
1015, 9, 100mp2and 429 1  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  M  =  ( A  gcd  B ) )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( M  x.  a
)  /\  B  =  ( M  x.  b
)  /\  ( a  gcd  b )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    x. cmul 7625   # cap 8343    / cdiv 8432   NN0cn0 8977   ZZcz 9054    gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  cncongr1  11784
  Copyright terms: Public domain W3C validator