ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsubdirap Unicode version

Theorem divsubdirap 8468
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
divsubdirap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )

Proof of Theorem divsubdirap
StepHypRef Expression
1 negcl 7962 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 divdirap 8457 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  +  -u B )  /  C )  =  ( ( A  /  C
)  +  ( -u B  /  C ) ) )
31, 2syl3an2 1250 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  /  C )  +  ( -u B  /  C ) ) )
4 negsub 8010 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
54oveq1d 5789 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
653adant3 1001 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
73, 6eqtr3d 2174 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  -  B
)  /  C ) )
8 divnegap 8466 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  -u ( B  /  C )  =  ( -u B  /  C ) )
983expb 1182 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  -u ( B  /  C )  =  (
-u B  /  C
) )
1093adant1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  -u ( B  /  C
)  =  ( -u B  /  C ) )
1110oveq2d 5790 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  +  ( -u B  /  C ) ) )
12 divclap 8438 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
13123expb 1182 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  /  C )  e.  CC )
14133adant2 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  /  C
)  e.  CC )
15 divclap 8438 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( B  /  C )  e.  CC )
16153expb 1182 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  /  C )  e.  CC )
17163adant1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  /  C
)  e.  CC )
1814, 17negsubd 8079 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
1911, 18eqtr3d 2174 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
207, 19eqtr3d 2174 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623    - cmin 7933   -ucneg 7934   # cap 8343    / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  divsubdirapd  8590  1mhlfehlf  8938  halfpm6th  8940  halfaddsub  8954  zeo  9156  cos2bnd  11467  sinq12gt0  12911  sincos6thpi  12923
  Copyright terms: Public domain W3C validator