ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfco Unicode version

Theorem dmfco 5482
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )

Proof of Theorem dmfco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfvex 5431 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( G `  A
)  e.  _V )
2 opeq1 3700 . . . . . . 7  |-  ( x  =  ( G `  A )  ->  <. x ,  y >.  =  <. ( G `  A ) ,  y >. )
32eleq1d 2206 . . . . . 6  |-  ( x  =  ( G `  A )  ->  ( <. x ,  y >.  e.  F  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
43ceqsexgv 2809 . . . . 5  |-  ( ( G `  A )  e.  _V  ->  ( E. x ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
51, 4syl 14 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  <. ( G `
 A ) ,  y >.  e.  F
) )
6 eqcom 2139 . . . . . . 7  |-  ( x  =  ( G `  A )  <->  ( G `  A )  =  x )
7 funopfvb 5458 . . . . . . 7  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  =  x  <->  <. A ,  x >.  e.  G ) )
86, 7syl5bb 191 . . . . . 6  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( x  =  ( G `  A )  <->  <. A ,  x >.  e.  G ) )
98anbi1d 460 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  ( <. A ,  x >.  e.  G  /\  <.
x ,  y >.  e.  F ) ) )
109exbidv 1797 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
115, 10bitr3d 189 . . 3  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( <. ( G `  A ) ,  y
>.  e.  F  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1211exbidv 1797 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. y <.
( G `  A
) ,  y >.  e.  F  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
13 eldm2g 4730 . . 3  |-  ( ( G `  A )  e.  _V  ->  (
( G `  A
)  e.  dom  F  <->  E. y <. ( G `  A ) ,  y
>.  e.  F ) )
141, 13syl 14 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  e.  dom  F  <->  E. y <. ( G `  A ) ,  y
>.  e.  F ) )
15 eldm2g 4730 . . . 4  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y <. A , 
y >.  e.  ( F  o.  G ) ) )
16 vex 2684 . . . . . 6  |-  y  e. 
_V
17 opelco2g 4702 . . . . . 6  |-  ( ( A  e.  dom  G  /\  y  e.  _V )  ->  ( <. A , 
y >.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1816, 17mpan2 421 . . . . 5  |-  ( A  e.  dom  G  -> 
( <. A ,  y
>.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1918exbidv 1797 . . . 4  |-  ( A  e.  dom  G  -> 
( E. y <. A ,  y >.  e.  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2015, 19bitrd 187 . . 3  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2120adantl 275 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2212, 14, 213bitr4rd 220 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2681   <.cop 3525   dom cdm 4534    o. ccom 4538   Fun wfun 5112   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  ctssdccl  6989
  Copyright terms: Public domain W3C validator