ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminss Unicode version

Theorem dminss 4788
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )

Proof of Theorem dminss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1523 . . . . . . 7  |-  ( ( x  e.  A  /\  x R y )  ->  E. x ( x  e.  A  /\  x R y ) )
21ancoms 264 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  E. x ( x  e.  A  /\  x R y ) )
3 vex 2613 . . . . . . 7  |-  y  e. 
_V
43elima2 4724 . . . . . 6  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
52, 4sylibr 132 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y  e.  ( R
" A ) )
6 simpl 107 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  x R y )
7 vex 2613 . . . . . . 7  |-  x  e. 
_V
83, 7brcnv 4566 . . . . . 6  |-  ( y `' R x  <->  x R
y )
96, 8sylibr 132 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y `' R x )
105, 9jca 300 . . . 4  |-  ( ( x R y  /\  x  e.  A )  ->  ( y  e.  ( R " A )  /\  y `' R x ) )
1110eximi 1532 . . 3  |-  ( E. y ( x R y  /\  x  e.  A )  ->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
127eldm 4580 . . . . 5  |-  ( x  e.  dom  R  <->  E. y  x R y )
1312anbi1i 446 . . . 4  |-  ( ( x  e.  dom  R  /\  x  e.  A
)  <->  ( E. y  x R y  /\  x  e.  A ) )
14 elin 3165 . . . 4  |-  ( x  e.  ( dom  R  i^i  A )  <->  ( x  e.  dom  R  /\  x  e.  A ) )
15 19.41v 1825 . . . 4  |-  ( E. y ( x R y  /\  x  e.  A )  <->  ( E. y  x R y  /\  x  e.  A )
)
1613, 14, 153bitr4i 210 . . 3  |-  ( x  e.  ( dom  R  i^i  A )  <->  E. y
( x R y  /\  x  e.  A
) )
177elima2 4724 . . 3  |-  ( x  e.  ( `' R " ( R " A
) )  <->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
1811, 16, 173imtr4i 199 . 2  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  ( `' R "
( R " A
) ) )
1918ssriv 3012 1  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102   E.wex 1422    e. wcel 1434    i^i cin 2981    C_ wss 2982   class class class wbr 3805   `'ccnv 4390   dom cdm 4391   "cima 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-xp 4397  df-cnv 4399  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator