ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp Unicode version

Theorem dminxp 4978
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Distinct variable groups:    x, A    x, y, B    x, C, y
Allowed substitution hint:    A( y)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4726 . . . 4  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  `' ( C  i^i  ( A  X.  B ) )
2 cnvin 4941 . . . . . 6  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  `' ( A  X.  B ) )
3 cnvxp 4952 . . . . . . 7  |-  `' ( A  X.  B )  =  ( B  X.  A )
43ineq2i 3269 . . . . . 6  |-  ( `' C  i^i  `' ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A ) )
52, 4eqtri 2158 . . . . 5  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A
) )
65rneqi 4762 . . . 4  |-  ran  `' ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A ) )
71, 6eqtri 2158 . . 3  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A
) )
87eqeq1i 2145 . 2  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  ran  ( `' C  i^i  ( B  X.  A ) )  =  A )
9 rninxp 4977 . 2  |-  ( ran  ( `' C  i^i  ( B  X.  A
) )  =  A  <->  A. x  e.  A  E. y  e.  B  y `' C x )
10 vex 2684 . . . . 5  |-  y  e. 
_V
11 vex 2684 . . . . 5  |-  x  e. 
_V
1210, 11brcnv 4717 . . . 4  |-  ( y `' C x  <->  x C
y )
1312rexbii 2440 . . 3  |-  ( E. y  e.  B  y `' C x  <->  E. y  e.  B  x C
y )
1413ralbii 2439 . 2  |-  ( A. x  e.  A  E. y  e.  B  y `' C x  <->  A. x  e.  A  E. y  e.  B  x C
y )
158, 9, 143bitri 205 1  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1331   A.wral 2414   E.wrex 2415    i^i cin 3065   class class class wbr 3924    X. cxp 4532   `'ccnv 4533   dom cdm 4534   ran crn 4535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator