ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg Unicode version

Theorem dmmptg 4842
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem dmmptg
StepHypRef Expression
1 elex 2611 . . . 4  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2427 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 rabid2 2531 . . 3  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
42, 3sylibr 132 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A  =  { x  e.  A  |  B  e.  _V } )
5 eqid 2082 . . 3  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65dmmpt 4840 . 2  |-  dom  (
x  e.  A  |->  B )  =  { x  e.  A  |  B  e.  _V }
74, 6syl6reqr 2133 1  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   A.wral 2349   {crab 2353   _Vcvv 2602    |-> cmpt 3841   dom cdm 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-mpt 3843  df-xp 4371  df-rel 4372  df-cnv 4373  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378
This theorem is referenced by:  resfunexg  5408  rdgtfr  6017  rdgruledefgg  6018  negfi  10237
  Copyright terms: Public domain W3C validator