ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpq Unicode version

Theorem dmmulpq 6632
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmmulpq  |-  dom  .Q  =  ( Q.  X.  Q. )

Proof of Theorem dmmulpq
Dummy variables  x  y  z  v  w  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5616 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
2 df-mqqs 6602 . . . 4  |-  .Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
32dmeqi 4564 . . 3  |-  dom  .Q  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
4 dmaddpqlem 6629 . . . . . . . . 9  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
5 dmaddpqlem 6629 . . . . . . . . 9  |-  ( y  e.  Q.  ->  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  )
64, 5anim12i 331 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
7 ee4anv 1851 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) 
<->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
86, 7sylibr 132 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) )
9 enqex 6612 . . . . . . . . . . . . . 14  |-  ~Q  e.  _V
10 ecexg 6176 . . . . . . . . . . . . . 14  |-  (  ~Q  e.  _V  ->  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  e.  _V )
119, 10ax-mp 7 . . . . . . . . . . . . 13  |-  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  e.  _V
1211isseti 2608 . . . . . . . . . . . 12  |-  E. z 
z  =  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q
13 ax-ia3 106 . . . . . . . . . . . . 13  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f >. ) ]  ~Q  ->  ( (
x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1413eximdv 1802 . . . . . . . . . . . 12  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( E. z 
z  =  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1512, 14mpi 15 . . . . . . . . . . 11  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
16152eximi 1533 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
17 exrot3 1621 . . . . . . . . . 10  |-  ( E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
1816, 17sylibr 132 . . . . . . . . 9  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
19182eximi 1533 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
20 exrot3 1621 . . . . . . . 8  |-  ( E. z E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
2119, 20sylibr 132 . . . . . . 7  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
228, 21syl 14 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
2322pm4.71i 383 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
24 19.42v 1828 . . . . 5  |-  ( E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2523, 24bitr4i 185 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2625opabbii 3853 . . 3  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q. ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
271, 3, 263eqtr4i 2112 . 2  |-  dom  .Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q. ) }
28 df-xp 4377 . 2  |-  ( Q. 
X.  Q. )  =  { <. x ,  y >.  |  ( x  e. 
Q.  /\  y  e.  Q. ) }
2927, 28eqtr4i 2105 1  |-  dom  .Q  =  ( Q.  X.  Q. )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   _Vcvv 2602   <.cop 3409   {copab 3846    X. cxp 4369   dom cdm 4371  (class class class)co 5543   {coprab 5544   [cec 6170    .pQ cmpq 6529    ~Q ceq 6531   Q.cnq 6532    .Q cmq 6535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-iom 4340  df-xp 4377  df-cnv 4379  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-oprab 5547  df-ec 6174  df-qs 6178  df-ni 6556  df-enq 6599  df-nqqs 6600  df-mqqs 6602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator