ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab Unicode version

Theorem dmopab 4574
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
dmopab  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab
StepHypRef Expression
1 nfopab1 3854 . . 3  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab2 3855 . . 3  |-  F/_ y { <. x ,  y
>.  |  ph }
31, 2dfdmf 4556 . 2  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y  x { <. x ,  y
>.  |  ph } y }
4 df-br 3793 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
5 opabid 4022 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
64, 5bitri 177 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
76exbii 1512 . . 3  |-  ( E. y  x { <. x ,  y >.  |  ph } y  <->  E. y ph )
87abbii 2169 . 2  |-  { x  |  E. y  x { <. x ,  y >.  |  ph } y }  =  { x  |  E. y ph }
93, 8eqtri 2076 1  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   <.cop 3406   class class class wbr 3792   {copab 3845   dom cdm 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-dm 4383
This theorem is referenced by:  dmopabss  4575  dmopab3  4576  fndmin  5302  dmoprab  5613  shftdm  9651
  Copyright terms: Public domain W3C validator