ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresv Unicode version

Theorem dmresv 4803
Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dmresv  |-  dom  ( A  |`  _V )  =  dom  A

Proof of Theorem dmresv
StepHypRef Expression
1 dmres 4654 . 2  |-  dom  ( A  |`  _V )  =  ( _V  i^i  dom  A )
2 incom 3159 . 2  |-  ( _V 
i^i  dom  A )  =  ( dom  A  i^i  _V )
3 inv1 3281 . 2  |-  ( dom 
A  i^i  _V )  =  dom  A
41, 2, 33eqtri 2106 1  |-  dom  ( A  |`  _V )  =  dom  A
Colors of variables: wff set class
Syntax hints:    = wceq 1285   _Vcvv 2602    i^i cin 2973   dom cdm 4365    |` cres 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-xp 4371  df-dm 4375  df-res 4377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator