ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmtpos Unicode version

Theorem dmtpos 5902
Description: The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )

Proof of Theorem dmtpos
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4400 . . . . 5  |-  -.  (/)  e.  ( _V  X.  _V )
2 ssel 2967 . . . . 5  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  ( (/) 
e.  dom  F  ->  (/)  e.  ( _V  X.  _V ) ) )
31, 2mtoi 600 . . . 4  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  -.  (/) 
e.  dom  F )
4 df-rel 4380 . . . 4  |-  ( Rel 
dom  F  <->  dom  F  C_  ( _V  X.  _V ) )
5 reldmtpos 5899 . . . 4  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
63, 4, 53imtr4i 194 . . 3  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
7 relcnv 4731 . . 3  |-  Rel  `' dom  F
86, 7jctir 300 . 2  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  /\  Rel  `' dom  F ) )
9 vex 2577 . . . . . . 7  |-  x  e. 
_V
10 vex 2577 . . . . . . 7  |-  y  e. 
_V
11 vex 2577 . . . . . . 7  |-  z  e. 
_V
12 brtposg 5900 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
139, 10, 11, 12mp3an 1243 . . . . . 6  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
1413a1i 9 . . . . 5  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
1514exbidv 1722 . . . 4  |-  ( Rel 
dom  F  ->  ( E. z <. x ,  y
>.tpos  F z  <->  E. z <. y ,  x >. F z ) )
169, 10opex 3994 . . . . 5  |-  <. x ,  y >.  e.  _V
1716eldm 4560 . . . 4  |-  ( <.
x ,  y >.  e.  dom tpos  F  <->  E. z <. x ,  y >.tpos  F z )
189, 10opelcnv 4545 . . . . 5  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  <. y ,  x >.  e.  dom  F )
1910, 9opex 3994 . . . . . 6  |-  <. y ,  x >.  e.  _V
2019eldm 4560 . . . . 5  |-  ( <.
y ,  x >.  e. 
dom  F  <->  E. z <. y ,  x >. F z )
2118, 20bitri 177 . . . 4  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  E. z <. y ,  x >. F z )
2215, 17, 213bitr4g 216 . . 3  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.  e.  dom tpos  F  <->  <. x ,  y
>.  e.  `' dom  F
) )
2322eqrelrdv2 4467 . 2  |-  ( ( ( Rel  dom tpos  F  /\  Rel  `' dom  F )  /\  Rel  dom  F )  ->  dom tpos  F  =  `' dom  F )
248, 23mpancom 407 1  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574    C_ wss 2945   (/)c0 3252   <.cop 3406   class class class wbr 3792    X. cxp 4371   `'ccnv 4372   dom cdm 4373   Rel wrel 4378  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-tpos 5891
This theorem is referenced by:  rntpos  5903  dftpos2  5907  dftpos3  5908  tposfn2  5912
  Copyright terms: Public domain W3C validator