ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid Unicode version

Theorem domfiexmid 6435
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
Assertion
Ref Expression
domfiexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem domfiexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 3926 . . . 4  |-  (/)  e.  _V
2 snfig 6381 . . . 4  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 7 . . 3  |-  { (/) }  e.  Fin
4 ssrab2 3089 . . . 4  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
5 ssdomg 6347 . . . 4  |-  ( {
(/) }  e.  Fin  ->  ( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  ->  { z  e.  { (/) }  |  ph }  ~<_  { (/) } ) )
63, 4, 5mp2 16 . . 3  |-  { z  e.  { (/) }  |  ph }  ~<_  { (/) }
7 domfiexmid.1 . . . . . 6  |-  ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )
87gen2 1380 . . . . 5  |-  A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  ->  y  e.  Fin )
9 p0ex 3980 . . . . . 6  |-  { (/) }  e.  _V
10 eleq1 2145 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( x  e.  Fin  <->  { (/) }  e.  Fin ) )
11 breq2 3810 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  ( y  ~<_  x  <->  y  ~<_  { (/) } ) )
1210, 11anbi12d 457 . . . . . . . 8  |-  ( x  =  { (/) }  ->  ( ( x  e.  Fin  /\  y  ~<_  x )  <->  ( { (/)
}  e.  Fin  /\  y  ~<_  { (/) } ) ) )
1312imbi1d 229 . . . . . . 7  |-  ( x  =  { (/) }  ->  ( ( ( x  e. 
Fin  /\  y  ~<_  x )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
) )
1413albidv 1747 . . . . . 6  |-  ( x  =  { (/) }  ->  ( A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  <->  A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) ) )
159, 14spcv 2700 . . . . 5  |-  ( A. x A. y ( ( x  e.  Fin  /\  y  ~<_  x )  -> 
y  e.  Fin )  ->  A. y ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) )
168, 15ax-mp 7 . . . 4  |-  A. y
( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  -> 
y  e.  Fin )
179rabex 3943 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
18 breq1 3809 . . . . . . 7  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  ~<_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  ~<_  { (/) } ) )
1918anbi2d 452 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  <-> 
( { (/) }  e.  Fin  /\  { z  e. 
{ (/) }  |  ph }  ~<_  { (/) } ) ) )
20 eleq1 2145 . . . . . 6  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e. 
Fin 
<->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2119, 20imbi12d 232 . . . . 5  |-  ( y  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( ( { (/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin ) 
<->  ( ( { (/) }  e.  Fin  /\  {
z  e.  { (/) }  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/) }  |  ph }  e.  Fin )
) )
2217, 21spcv 2700 . . . 4  |-  ( A. y ( ( {
(/) }  e.  Fin  /\  y  ~<_  { (/) } )  ->  y  e.  Fin )  ->  ( ( {
(/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin ) )
2316, 22ax-mp 7 . . 3  |-  ( ( { (/) }  e.  Fin  /\ 
{ z  e.  { (/)
}  |  ph }  ~<_  { (/) } )  ->  { z  e.  { (/)
}  |  ph }  e.  Fin )
243, 6, 23mp2an 417 . 2  |-  { z  e.  { (/) }  |  ph }  e.  Fin
2524ssfilem 6432 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 662   A.wal 1283    = wceq 1285    e. wcel 1434   {crab 2357   _Vcvv 2610    C_ wss 2983   (/)c0 3268   {csn 3417   class class class wbr 3806    ~<_ cdom 6308   Fincfn 6309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-br 3807  df-opab 3861  df-id 4077  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-1o 6086  df-er 6194  df-en 6310  df-dom 6311  df-fin 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator