Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb1 Unicode version

Theorem drsb1 1721
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
drsb1

Proof of Theorem drsb1
StepHypRef Expression
1 equequ1 1639 . . . . 5
21sps 1471 . . . 4
32imbi1d 229 . . 3
42anbi1d 453 . . . 4
54drex1 1720 . . 3
63, 5anbi12d 457 . 2
7 df-sb 1687 . 2
8 df-sb 1687 . 2
96, 7, 83bitr4g 221 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103  wal 1283  wex 1422  wsb 1686 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468 This theorem depends on definitions:  df-bi 115  df-sb 1687 This theorem is referenced by:  sbequi  1761  nfsbxy  1860  nfsbxyt  1861  sbcomxyyz  1888  iotaeq  4905
 Copyright terms: Public domain W3C validator