ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0 Unicode version

Theorem dvds0 11497
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0  |-  ( N  e.  ZZ  ->  N  ||  0 )

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 9052 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
21mul02d 8147 . 2  |-  ( N  e.  ZZ  ->  (
0  x.  N )  =  0 )
3 0z 9058 . . 3  |-  0  e.  ZZ
4 dvds0lem 11492 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  /\  ( 0  x.  N
)  =  0 )  ->  N  ||  0
)
54ex 114 . . 3  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
63, 3, 5mp3an13 1306 . 2  |-  ( N  e.  ZZ  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
72, 6mpd 13 1  |-  ( N  e.  ZZ  ->  N  ||  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   0cc0 7613    x. cmul 7618   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928  df-neg 7929  df-z 9048  df-dvds 11483
This theorem is referenced by:  0dvds  11502  alzdvds  11541  fzo0dvdseq  11544  z0even  11597  gcddvds  11641  gcd0id  11656  bezoutlemmain  11675  dfgcd3  11687  dfgcd2  11691  dvdssq  11708  dvdslcm  11739  lcmdvds  11749  mulgcddvds  11764
  Copyright terms: Public domain W3C validator