ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsadd Unicode version

Theorem dvdsadd 11525
Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdsadd  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( M  +  N ) ) )

Proof of Theorem dvdsadd
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
2 zaddcl 9087 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
3 simpr 109 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
4 iddvds 11495 . . . . 5  |-  ( M  e.  ZZ  ->  M  ||  M )
54adantr 274 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  M )
6 zcn 9052 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
7 zcn 9052 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
8 pncan 7961 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  N
)  =  M )
96, 7, 8syl2an 287 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  +  N )  -  N
)  =  M )
105, 9breqtrrd 3951 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( ( M  +  N )  -  N ) )
11 dvdssub2 11524 . . 3  |-  ( ( ( M  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  N  e.  ZZ )  /\  M  ||  ( ( M  +  N )  -  N ) )  ->  ( M  ||  ( M  +  N
)  <->  M  ||  N ) )
121, 2, 3, 10, 11syl31anc 1219 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M  +  N )  <->  M 
||  N ) )
1312bicomd 140 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  ( M  +  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   CCcc 7611    + caddc 7616    - cmin 7926   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-dvds 11483
This theorem is referenced by:  dvdsaddr  11526  dvdssub  11527  dvdssubr  11528  oddp1even  11562
  Copyright terms: Public domain W3C validator