ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnegb Unicode version

Theorem dvdsnegb 11510
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )

Proof of Theorem dvdsnegb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 znegcl 9085 . . . 4  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
32anim2i 339 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  -u N  e.  ZZ ) )
4 znegcl 9085 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
54adantl 275 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
6 zcn 9059 . . . . 5  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 9059 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 mulneg1 8157 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( -u x  x.  M )  =  -u ( x  x.  M
) )
9 negeq 7955 . . . . . . 7  |-  ( ( x  x.  M )  =  N  ->  -u (
x  x.  M )  =  -u N )
109eqeq2d 2151 . . . . . 6  |-  ( ( x  x.  M )  =  N  ->  (
( -u x  x.  M
)  =  -u (
x  x.  M )  <-> 
( -u x  x.  M
)  =  -u N
) )
118, 10syl5ibcom 154 . . . . 5  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
126, 7, 11syl2anr 288 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
1312adantlr 468 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
141, 3, 5, 13dvds1lem 11504 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  M  ||  -u N
) )
15 zcn 9059 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
16 negeq 7955 . . . . . . . . . 10  |-  ( ( x  x.  M )  =  -u N  ->  -u (
x  x.  M )  =  -u -u N )
17 negneg 8012 . . . . . . . . . 10  |-  ( N  e.  CC  ->  -u -u N  =  N )
1816, 17sylan9eqr 2194 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( x  x.  M
)  =  -u N
)  ->  -u ( x  x.  M )  =  N )
198, 18sylan9eq 2192 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( N  e.  CC  /\  ( x  x.  M )  = 
-u N ) )  ->  ( -u x  x.  M )  =  N )
2019expr 372 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
21203impa 1176 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
226, 7, 15, 21syl3an 1258 . . . . 5  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
23223coml 1188 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
24233expa 1181 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
253, 1, 5, 24dvds1lem 11504 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  -u N  ->  M  ||  N ) )
2614, 25impbid 128 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618    x. cmul 7625   -ucneg 7934   ZZcz 9054    || cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-z 9055  df-dvds 11494
This theorem is referenced by:  dvdsabsb  11512  dvdssub  11538  dvdsadd2b  11540  gcdneg  11670  bezoutlemaz  11691  bezoutlembz  11692
  Copyright terms: Public domain W3C validator