ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoveq Unicode version

Theorem ecopoveq 6267
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
Hypothesis
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
Assertion
Ref Expression
ecopoveq  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Distinct variable groups:    x, y, z, w, v, u,  .+    x, S, y, z, w, v, u    x, A, y, z, w, v, u    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y,
z, w, v, u)

Proof of Theorem ecopoveq
StepHypRef Expression
1 oveq12 5552 . . . 4  |-  ( ( z  =  A  /\  u  =  D )  ->  ( z  .+  u
)  =  ( A 
.+  D ) )
2 oveq12 5552 . . . 4  |-  ( ( w  =  B  /\  v  =  C )  ->  ( w  .+  v
)  =  ( B 
.+  C ) )
31, 2eqeqan12d 2097 . . 3  |-  ( ( ( z  =  A  /\  u  =  D )  /\  ( w  =  B  /\  v  =  C ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
43an42s 554 . 2  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ( z  .+  u )  =  ( w  .+  v )  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
5 ecopopr.1 . 2  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
64, 5opbrop 4445 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   <.cop 3409   class class class wbr 3793   {copab 3846    X. cxp 4369  (class class class)co 5543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-xp 4377  df-iota 4897  df-fv 4940  df-ov 5546
This theorem is referenced by:  ecopovsym  6268  ecopovtrn  6269  ecopover  6270  ecopovsymg  6271  ecopovtrng  6272  ecopoverg  6273  enqbreq  6608  enrbreq  6973  prsrlem1  6981
  Copyright terms: Public domain W3C validator